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Abstract
Geographical data usually exhibit some amount of spatial dependency, a correlation between
the values of neighbouring districts. Thus one wants to have measures for the strength of this
dependency and tests for the deviation from randomly distributed values. There exist several
tests. In this survey, they are collected and compared. This is done separately for binary vari-
ables assuming only two values and for real-valued variables. Among the tests are the black-
black count, the black-white count, Moran’s I, Geary’s c and the Getis-Ord statistics. Some
new statistics are proposed: a variant to the black-black count and statistics based on clusters
composed of triplets of districts. Included are also new results on the distribution of Moran’s I
and its local version, based on simulations using several areas with 37 to 327 districts.
Roughly speaking, the distribution of I is fairly close to a normal distribution and surprisingly
independent of the underlying distribution of the district values while the local I’ s are
extremely far from normal and highly dependent on the underlying distribution.

1 Introduction

1.1 Goal

An important goal of data mining is to extract hidden relationships between objects, in
particular relationships between some variables, possibly conditional on the values of other
variables. However, looking unspecifically for possibly interesting properties of a data set
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involves a big danger: every meaningful data set, even random data, exhibits some
peculiarities just by chance. As a rough guide to judge the importance of relationships in the
data, statistical test procedures are used, but formally significant results do not prove the
existence of deviations from randomness, they only give hints that have to be confirmed (or
disproved) in further steps. This is, however, not the place to discuss the role of statistics in
data mining in general; some specific caveats will be mentioned later (Section 6.2).

Geographical data show a peculiarity: in addition to the conventional variables, the relative
geographical position of two objects is an important feature. Thus one may ask whether a
variable shows a correlation between the values of neighbouring objects. Such a situation is
called a spatial autocorrelation. ‘Autocorrelation’ refers to a correlation within one variable
between the objects in analogy to the autocorrelation of time series. A different, though
related, question is whether objects with some property are more or less evenly distributed in
the space or exhibit a spatial clustering. This question is the main theme of this article.

We will give a survey on the existing methods of determining spatial clustering with emphasis
on those that are useful for data mining. Essential characteristics of the exploratory analysis
are that hundreds or thousands of tests are performed on a data set; thus the overall error
probabilit y cannot reasonably be kept at a predefined level. Consequently, the exact error
probabilit y of a single test is not important (an approximate value suff ices), but it should be
rather small (under 1% or even 0.1%) so that the distribution of the test statistic in the tails is
needed where the normal approximation is often insuff icient. In addition, since the multitude
of tests necessarily leads to formally significant results, emphasis is on results that can easily
be interpreted.

We will concentrate on area data – to be defined later – and mention some related work on
point data and continuous data. The survey includes some new results by the author. These are
expanded to some detail i n Gebhardt (1998b, 2000). This report does not follow the style of a
textbook – proofs are mostly omitted.

1.2 Data types

Geographic data can roughly be classified into three types.

First, there are spatially continuous data such as the elevation. This particular variable is
virtually known for all points of earth with suff icient accuracy. Another example is the air
pressure. It is known only for selected points and must be interpolated in between, but
nevertheless it exists everywhere and thus is a spatially continuous variable. In addition, it is
time-dependent.

The second type are point pattern data or point data: data that exist for some points only. An
example is the epicenters of earthquakes; the location is the data element. Additional variables
may be attached to the location: magnitude of the quake, time, duration. The data may be
three-dimensional, for instance the center of the earthquake including also the depth. Another
example is pollutant concentration. This is actually a continuous variable but sometimes
measured only at so few points that interpolation is infeasible. Therefore it may have to be
treated as point data.

Still another example is the residence of persons having a particular disease. In analyzing such
data one has of course to take into account that people are not evenly spread over earth. If this
fact is neglected, one might find locations with high population density rather than high
disease risk.
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The third type consists of area data. A connected region is subdivided into smaller parts
(states, counties, statistical districts, fields, cells, pixels), here called districts. The districts are
non-overlapping and their union is the whole region. Often it is assumed that each district is
connected.

To each district, the value of one or more variables is attached. In this report we distinguish
binary and real-valued variables. Binary variables take on two values only: 1 and 0, yes and
no, black and white, marked and unmarked. The values may be inherently binary, for instance
the election districts won by a particular party or the distribution of two fiber types in a cross
section of a muscle, analyzed by Venema (1992). The binary variable may signify one class of
a nominal variable. Often the binary data are derived from a real-valued variable, for instance
whether that variable exceeds a natural or an arbitrarily chosen threshold.

In many cases the original variables have to be normalized somehow to make the values com-
parable. For instance, comparing the numbers of unemployed in a county makes littl e sense;
the unemployment rate should be considered. Finding the proper normalization can be a
problem. Thus the number of traff ic accidents in a county depends certainly on the population
(or the number of licensed cars) but also on the road net and the proportion of cars from other
counties on the road.

Even with normalization, the areas should be comparable to achieve proper results. If f or in-
stance the number of inhabitants is the normalizing factor, the population of the areas should
not differ too much. It makes no sense to compare Vatican City with Russia.

1.3 Example

As an ill ustration consider Figure 1 (on page 32). It shows 171 counties in north-west
Germany, marked by the motor vehicle codes (if a city and the surrounding county have the
same code, the latter one is distinguished here by an asterix). Some examples to help locate
the region: HB Bremen, H Hannover, E Essen, K Köln (Cologne), AC Aachen, BN Bonn, F
Frankfurt, SB Saarbrücken.

Basis for the variable under consideration is the number of persons working and counted for
social security (sozialversicherungspflichtig Beschäftigte, henceforth called “workers” for
short). Figure 1 (page 32) shows the counties with a high share of aliens among the workers.
There seem to be two clusters, one in the industrial region between Essen and Bonn and the
other one around Frankfurt. Is this a chance result? The average of the county values is 0.071
with a standard deviation of 0.034. The largest value, 0.183, pertains to Groß Gerau (GG)
near Frankfurt, the smallest one to Dannenberg (DAN) in the north. As a binary variable, we
will arbitrarily bisect the rate of aliens at 0.11, i.e., counties with a rate > 0.11 are considered
black or marked. Incidentally, the results for bisecting at 0.10 or 0.12 are comparable. The
data are taken from Statistisches Bundesamt (1994, 1995) and refer to 1993.

1.4 Overview

The main part deals with the analysis of area data: binary variables in chapter 3, real-valued
variables in chapter 4. Common concepts are introduced before in chapter 2.

The treatment of point data and spatially continuous data is sketched in chapter 5.

The last chapter characterizes some textbooks, points to other related work and warns of some
dangers and pitfalls particularly with spatial data; finally it offers some general conclusions.

We neglect here models in space and time, although they are also treated in several textbooks,
for instance in Anselin (1988), Cressie (1993).
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2 General model for area data
A goal of the analysis of spatial data is to find spatial correlations and spatial regularities or
peculiarities. Due to the two-dimensional structure there is a high chance that counties with
large (or small ) values of the considered variable are neighbours; thus one has to be cautious
in interpreting seemingly conspicuous concentrations. For a statistical test, one has to specify
the null hypothesis (no peculiarity is present, usually independence of all districts is assumed)
and a proper alternative or set of alternatives, the counter hypotheses. The concepts common
to most tests of spatial area data are developed in this chapter.

2.1 Null hypothesis

The null hypothesis with area data is usually that all values are independent and distributed
according to a known or unknown common distribution function.

Sometimes the assumption of a common distribution is grossly in error, for instance if the
variable is derived from samples of different sizes (different population sizes in the districts).
Here one can sometimes assume that the distributions belong to the same class (Poisson,
normal, etc.) and that, under the null hypothesis, the pertinent parameter is known up to a
common constant. For instance, the expectation of the normally distributed variables could be
µ (unknown) and the variance σ2/di with unknown σ and known di, the population size of

district i, if the variables are district means.

Most statistics for testing the independence against spatial dependencies use a weight matrix
(association matrix) W with elements wij ; wij  is a measure for the association or neighbour-

hood between districts i and j. Some examples are:

• wij  = 1 if districts i and j have a common boundary (or, alternatively, at least a com-
mon boundary point), otherwise wij=0.

• wij  is the proportion of the boundary of district i that is shared with district j. This

weight matrix is unsymmetric.

• wij  = 1 if the distance between districts i and j is less than a threshold; otherwise, wij  =

0. The distance may be the distance between the capitals of the districts or between the
geographical centers or between the interior points farthest from the boundary or be-
tween the areas (i.e., direct neighbours have distance 0).

• wij  is a decreasing function of the distance (and usually equal to zero if the distance

exceeds a threshold).

• wij  = 1 if the center of district j is one of the nearest k to the center of district i; other-
wise, wij  = 0. This weight matrix is unsymmetric.

• wij  reflects the reachabilit y of district j from district i. Here two major cities that are
geographically far apart may have a large value for wij  because they are connected by

train or airline. Such models are used for the spread of infectious diseases.

In the binary case based on distances, small districts tend to have many associated districts
(districts with corresponding wij  > 0), while large districts may have few associated districts

or none at all . An example can be found in Unwin (1996). If , however, the common boundary
is the criterion, small districts tend to have few associated districts (i.e. direct neighbours);
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tiny local shifts in the geographical boundary can change the adjacency, for instance if four
districts come nearly together in a point.

2.2 Coun ter hypotheses

The null hypothesis assumes independence of the spatial variables. In geographic data, this is
nearly never true; neighbouring districts or points are almost always correlated. This fact
hampers already the design or the evaluation of statistical tests. The situation becomes worse
as soon as one tries to choose a counter hypothesis or a set of counter hypotheses. Usually one
is not interested in just any deviation from independence (which is not given anyway) but in
certain types of dependence, but how to specify them?

There are many possibiliti es to define counter hypotheses. One general class consists of distri-
butions that are still i ndependent but the distribution parameter(s) differ from one district to
the other. For example, the variables for the districts may be normally distributed with a
common variance but with means shifting from north to south (or in any other direction), the
so-called trend-surface analysis. Such situations can be tested by linear models containing
latitude and longitude as independent variables in the usual way.

Peculiar to spatial data is the assumption that the variables for near-by points or districts are
correlated. Similar models are known from time series; however, these have only one dimen-
sion (the time) and a causal dependence in one direction. With spatial data, one has two (or
even more) dimensions and causal dependencies in all directions. This implies more com-
plicated models than with time series.

One particular often used model for spatial variables is Whittle’s model (simultaneous
autoregressive model), see e.g. Cli ff and Ord (1981, Section 6.2.3), where the independent
variables εi are hidden and only derived and mutually dependent variables X1, …, Xn can be

observed:

∑
≠

+=
ij

ijiji XwX ερ (1)

or in matrix notation

X = ρ W X + ε
where usually W is known while ρ and ε are to be estimated; the variables εi are assumed in-

dependent. The last equation can be rewritten as   

X = (I – ρ W)–1 ε.

With ρ = 0 one gets the null hypothesis.

Another model is the moving-average model, Cli ff and Ord (1981, Section 6.2.5),

∑
≠

+=
ij

jijii wX ,ερε ( )X I W  = + ρ ε. (2)

Both models assume an autocorrelation that is in principle the same (it is ‘stationary’) in all
parts of the region. Any deviations in a subregion must be reflected beforehand in the choice
of the weights wij . The models do not permit for instance different but unknown strengths of

the correlations in different areas or a different mean in an area or global trends in the mean.
Different strengths of the correlation between neighbours may be a peculiarity of the
particular variable; it may also be an artefact, for instance if the districts are on the average
smaller in some regions than in others.

Still other models and estimators for the parameters are treated in Cli ff and Ord (1981,
Section 6), in particular the conditional autoregressive model (Bartlett’s model) in Section
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6.2.4, see also Venema (1988, 1989, 1993) and Pernuš (1989). Besag (1974) suggests a binary
Markov random field model called autologistic model. More complicated models consider a
time series of spatial data. These will not be discussed here; see e.g. Sections 1.6 and 1.7.3 of
Cli ff and Ord (1981), Markov connected components fields in space and time by Møller
(1998) and a Bayesian model in space and time by Knorr-Held and Besag (1998).

2.3 Form of test statistics
Let us denote the random variable measured for district i by xi. Then many test statistics used

in practice have the form

C w fij ij
i j,
∑ (3)

with a constant C and fij  = f(xi, xj). The matrix W used here need not necessarily be the same

as in the counter hypotheses of Section 2.2 but to use the same one (as far as it is known)
seems a good choice according to some asymptotic results for such test statistics as Moran’s I
and Geary’s c (see below), Cli ff and Ord (1981, Section 6.4.3).
Example. Assume wij  is 1 for direct neighbours and 0 otherwise and xi is binary, fij  = xi · xj.

Then w fij ij∑ counts the pairs of neighbouring marked (or black) districts ( xi = 1); each

common boundary of marked districts is counted twice. 
1

2
w fij ij∑  is called the black-black

count statistic.

A variety of weights W and functions f have been proposed in the literature; only some of
them – the more important ones – are investigated in this survey. Some others are sketched in
Marshall (1991). Recommendations for choosing the weight matrix W are given by Griff ith
(1995). According to that article, an incorrect choice inflates the standard error of the model
and gives a wrong estimate for the autocorrelation, particularly for small sample sizes. Gener-
ally a small effective area outside which the weights are small or 0 seems to be better than one
that is too large. In case of doubt it is advisable to use several weight matrices and to compare
the results, for instance several thresholds if wij  = 1 as long as the distance is below the

threshold.

Often one or more of the following properties are assumed for the weight matrix W. Note that
not all properties are compatible.

1.  wij  is binary, i.e. either 1 or 0.

2.  wii  = 0. It seems that this assumption is sometimes tacitly made in the literature.

Sometimes it is made by using summations (as in formula (3) above) over i ≠ j.

3.  wijj∑ = 1 (or some other common constant).

4.  wij  = wji . Note that in general W is not assumed to be symmetric.

Usually one has wij  ≥ 0, but this is not required.

2.4 Assumptions on the distribution

The distribution of the test statistics under the null hypothesis is mostly computed under one
of the following assumptions:

N, normality. The values for the districts are derived from a common distribution function,
for instance a normal distribution function with a common expectation and variance.
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Under the null hypothesis, all districts are independent. An alternative distribution is:
binomial with common probabilit y p for outcome 1.

R, randomization. The set of values for the n districts is given; the assignment to the indi-
vidual districts is random. There are n! permutations. In the case of binary variables
this amounts to a fixed number of marked districts.

Rk, rank statistics. The statistic is based on the ranks of the n values rather than on the
values themselves. This makes the statistic distribution independent.

A test under assumption R is a conditional test: it is performed under the condition that the
numerical values of the outcomes for all districts are known, only the proper assignment to
the districts is random. Conditional tests are always valid tests in the following sense: if α, the
error probabilit y of f irst kind, is the same under each condition (in our case: for each possible
set of outcomes), then α is also the error probabilit y of f irst kind for the unconditional test.
However, the best conditional test need not be the best unconditional test (for a specified
meaning of ‘ best’) .

The null hypothesis assumes usually a common variance for all districts. This condition is not
fulfill ed if the variables are quotients mi/di with largely differing denominators (individuals at

risk in the medical lit erature); the numerator (numbers of cases in the medical lit erature)
counts the subpopulation with a distinct property. The diversity in the variances affects even
the randomization assumption R, see Besag and Newell (1991, Section 2.1), as well as the
proposed remedy to replace the quotient mi/di by the probabilit y of exceeding this quotient

under the assumption of a Poisson distribution with an expectation proportional to di (i.e.

expectation λdi with λ = ∑∑m di i/ ). The reason is that districts with a large population

tend to be more homogeneous (under the null hypothesis) so that small as well as large quo-
tients tend to be concentrated in areas with small denominators, e.g. rural areas, with an
increased chance of exhibiting there a cluster of either small or large values. On the other
hand, small deviations from the null hypothesis are more likely to become apparent in districts
with large denominators favouring there a spatial clustering.

The effect of different denominators di  on some tests is checked in an example given by

Waller and Turnbull (1993); sometimes the test results differ markedly.

To reduce the influence of differing variances, the quotients mi/di may be replaced by their

square roots or, in case of small numerators, by the Freeman-Tukey square root transforma-
tion m d m di i i i/ ( ) /+ +1 ; an example is explored in Cressie and Read (1989).

2.5 Monte Carlo tests

For designing an exact test of a hypothesis, it is necessary to know the distribution function of
the test statistic under the null hypothesis or at least its α percentile. This is the case only in
few situations, see e.g. Section 4.1, Moran’s I; however, the computation is quite involved.

Often one knows only the first two moments of the distribution. Then its percentiles are
approximated from those of the normal distribution with the same expectation and variance
or, if higher moments are available, from those of a χ2- or beta distribution; for an example
based on a particular f ij  in (3), see Costanzo et al. (1983).

Another possibilit y is to find an approximation for the distribution function by Monte Carlo
simulations, for instance by computing 10000 random values. This is in particular feasible if
the distribution function does not depend on further parameters (or perhaps on a single
parameter; then the computation has to be repeated for several parameter values and inter-
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polated in between). To find reliable values for the 5% boundary, 1000 repetitions may
suff ice, but in data mining situations one needs the boundaries for error probabiliti es below
1% and thus more repetitions.

Alternatively on can apply a Monte Carlo test. From the null hypothesis, N – 1 samples are
drawn and the real data set is taken as N-th sample. The N statistics computed from the sam-
ples are ordered and for a one-sided upper test at level α, the αN largest values are rejected. In
particular, if the value computed from the real data is among them, the null hypothesis is
rejected for the real data. Correspondingly one proceeds for one-sided tests at the lower end
and for two-sided tests. This Monte Carlo test has exactly the error probabilit y α (if αN is an
integer), but it is a randomized test: it involves a random component (roughly speaking, in
certain cases the test outcome is determined by a chance algorithm); repeating it (with other
random samples in the chance algorithm) may lead to a different result. Thus it is not
advisable to use N = 20 for α = 5% but rather a much larger sample size.

The Monte Carlo test is widely used. Besag and Diggle (1977) ill ustrate its application in
spatial data analysis with several examples and discuss its usefulness; see also Cli ff and Ord
(1981, Section 2.7).

3 Area statistics for binary variables
Just to look at a map where the districts are coloured black or white is not a reliable way to
find peculiatities such as clusters of black districts; the eye is deceived for instance by
different district sizes. The tests collected in this chapter detect primarily concentrations of
districts with one colour (or one value of a binary variable). They may also detect extreme
lack of clustering by extremely low values of the test statistic.

Generally one has to distinguish global tests for the whole region stating just a deviation from
randomness and local tests testing a particular district (and its surrounding). All tests for
binary data in this section are global; the tests for real-valued variables in Section 4 are in part
global, in part local.

3.1 Black-black c oun t test

Probably the best-known test for clustering in binary data is the black-black count test. The
districts are either black or white. The test compares essentially the number of
neighbourhoods of two black districts with the total number of neighbourhood relations. The
black-black count belongs to the join counts admitting more than two classes of districts.

Moments for the distribution of the black-black count statistic are given in Cli ff and Ord
(1981, Section 2.2) and in many other textbooks. The value for a black district is 1, that for a
white district 0. The matrix W is binary; for instance, wij  = 1 if districts i and j are neighbours
and wij  = 0 otherwise; wii  = 0. Then the general form of the statistic (3) is

BB w x xij i ji j
= ∑1

2 ,
.

We need the abbreviations

n X ii1 = ∑ , S wiji j0 = ∑ ,
,

( )S w wij jii j1

21

2
= +∑ ,

,
( )∑ +=

i ii wwS 2
 ..2 (4)
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with w wi ijj. = ∑  and w.j correspondingly, as is customary in statistics. For black-black

counts, wij  = wji  and wi. = w.i, which is the number of neighbours of that district. If the wij

take only the values 0 and 1 and w wij ji= , then one gets S1 = 2S0.

Under Assumption N of Section 2.4 (of course with binomial distribution, parameter p) the
first two moments under the null hypothesis are:

E( )BB S p= 1

2 0
2 ,

( ) ( )[ ]var( )BB p p S p S p= − − +1

4
1 12

1 2 under Assumption N.

This test assumes that the proportion p is known in advance (or estimated independently of
the sample to be analyzed).

Under Assumption R the total number of black districts, n1, is given. The formulae for the

moments are more complex due to dependence between the districts.

( )
( )E( )BB S

n n

n n
=

−
−

1

2

1

10
1 1 , (5)

( )
( )

( )( )
( )( )

( )( )( )
( )( )( )4

1

1
2

1 2

1 2

1 2 3

1 2 31
1 1 1 1 1 1 1 1 1⋅ =

−
−

−
− −
− −

+
− − −
− − −









var( )BB S

n n

n n

n n n

n n n

n n n n

n n n n

( )( )
( )( )

( )( )( )
( )( )( )+

− −
− −

−
− − −
− − −









S

n n n

n n n

n n n n

n n n n2
1 1 1 1 1 1 11 2

1 2

1 2 3

1 2 3

( )( )( )
( )( )( )+

− − −
− − −

S
n n n n

n n n n0
2 1 1 1 11 2 3

1 2 3

( )
( )−

−
−









S

n n

n n0
1 1

2
1

1
under Assumption R. (6)

This test is the correct one if p is unknown and would have to be estimated from the sample to
be analyzed. It may also be used if p is known, see Section 2.4.

Assuming that an approximation by the normal distribution is good enough, expectation and
variance of BB can be used in the usual way for testing whether the number of black-black
counts is too large indicating clustering or too low indicating a trend to regularity (the black
districts are too evenly spread). According to simulations with several areas (37 to 171 dis-
tricts) in Gebhardt (1998b, Appendix A), the deviations from a normal distribution are in the
order of the expected sample fluctuations for 1000 iterations; however, for 10000 iterations,
some deviations become apparent: the upper tail i s still t hicker, the lower one thinner than for
a standard normal variable. To be more precise, we give an example. The tail probabilit y at z
= 2.5 varies mostly between 0.8% and 1.6% depending on the percentage of marked districts
(for the standard normal distribution, the tail probabilit y is 0.62%); at z = 3.0 it varies between
0.2% and 0.5% (0.14% for the normal distribution). The largest deviations occur if about 10%
of the districts are marked. A theorem stating suff icient conditions for asymptotic normality is
stated in Cli ff and Ord (1981, Section 2.4.2).

Taking as an example the counties with an alien rate > 0.11 in Figure 1, we find 24 black
districts out of 171. There are 876 neighbour relations, i.e. S0 = 876; furthermore, S2 =

22 896, BB = 37, E(BB) = 8.63, var(BB) = 19.98 under Assumption N. Thus, BB is more than



Survey on cluster tests for spatial area data 10

6 standard deviations off its expectation; the result is highly significant, as one would expect.
Under Assumption R, E(BB) = 8.32 and var(BB) = 30 so that the result is even more
significant.

3.2 Variant of the black-black c oun t test

An excess of black-black counts may be due to a clustering of the marked (black) districts; it
may also come from a concentration in districts with many neighbours (usually large
districts). Similarly, a deficit of black-black counts may be caused by a concentration on
districts with few neighbours: small districts or districts along the border of the whole region.

These are not the deviations from randomness that one is interested in if one is looking for
spatial clusters. Therefore a variant of the black-black count is proposed in Gebhardt (2000,
1998b, 1997b).1

The expectation of BB in (5) is computed under the conditions that the total number of black
districts is given (Assumption R of Section 2.4) and that the total number of neighbours of the
black districts is given as well . We will call this “ Assumption R*” . Let T w xij ji j0 = ∑ ,

 denote

the total number of neighbours of the marked districts (xj =1) and ( )T w xij jij2

2
= ∑∑ . Then

with a slight approximation one obtains

.R Assumptionunder             
/22

1
)( *

100

2
2

0

nTS

TT
BB

−
−=E

The variance under these two conditions is unknown but it should be smaller than that of BB
under Assumption R in Section 3.1. This has been verified by numerous tests with different
regions, see Gebhardt (1998b, Appendix B). In these cases it has been found that equation (6)
overestimates the variance slightly (usually by 0 to 3%). So we are on the safe side (the real
error of f irst kind is slightly smaller than expected).

From our example, Figure 1, we now find E(BB) = 10.0 under Assumption R*. This is larger
than the corresponding value in Section 3.1 and reflects the fact that the black districts have
an above-average number of neighbours (5.62; the average is 5.43). The clustering is still
highly significant.

3.3 Black-white coun t test

Instead of looking for an excess of black-black counts one might search a deficit of black-
white counts BW, i.e. neighbourhood relations between a black and a white district. In our
general expression (3) we have to insert f(xi,xj) = (xi – xj)2. Thus we define

( )BW w x xij i j
i j

= −∑1

2

2

,

.

Defining WW analogously to BB, one has BB + BW + WW = S0.

Under Assumption N of Section 2.4, the first two moments are according to Cli ff and Ord
(1981, Section 2.2), using q = 1 – p,

E( ) ,BW S pq= 0 ( )var( ) .BW S pq S pq pq= + −1 2

1

4
1 4

                                                
1  Note that the statistic b in these publications counts each neighbourhood relation twice, i.e. b = 2BB.
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Under Assumption R, using n2 = n – n1, one has according to Cli ff and Ord (1981, Section

1.5)

( )E( ) ,BW S
n n

n n
=

−0
1 2

1

( ) ( ) ( ) ( )
( )( )( )var BW S

n n

n n
S S S

n n n n

n n n n
BW( ) ( ) .=

−
+ + −

− −
− − −

−1

4 1

1 1

1 2 32
1 2

0
2

1 2
1 1 2 2 2E

Similar formulae hold for more than two classes of districts, see Cli ff and Ord (1981, Section
1.5). The complement, the number of neighbours belonging to the same class, is approximated
by a χ2 distribution in Ohno et al. (1979) and applied to five classes of cancer mortality in
1123 Japanese districts. The generalization of the BW count to more than two classes,
counting then the neighbourhoods involving different classes, seems to be more accurate,
while Ohno’s approximation is easier to compute.

Under Assumption N, we find for the example in Figure 1 (Section 1.3) BW = 61, E(BW) =
105.7, var(BW) = 568.7, i.e. BW is too low by only 1.9 standard deviations. This insignificant
result is due to the low portion of marked districts, 14%.

3.4 Triplet-based cluster test

A completely different approach to searching concentrations of marked districts is proposed in
Gebhardt (1997b, 1999). Rather than counting neighbourhood relations between marked dis-
tricts, the size of marked subregions is examined. The first idea that comes to mind is to
consider the size of a connected subregion that consists of marked districts only and whose
neighbours are all unmarked; such a subregion is called a connectivity region. It turns out,
however, that this is a bad choice. Except if there are very few marked districts (perhaps less
than 5 %), marked districts show a considerable degree of connectedness even under the null
hypothesis of random distribution. A stronger requirement for clustering is needed.

For this purpose, marked triplets of districts are introduced. Essentially a triplet consists of
three (marked) districts with common boundaries. Sometimes four or more districts meet at a
point. For such situations a more involved definition is needed.

A triplet is a set of three (marked) districts with a point in common such that one of the dis-
tricts shares with either of the other two a boundary ending in that common point. A triplet-
based cluster or in short a triplet cluster is a maximal set of overlapping triplets. The test
statistic TC used is the total number of districts belonging to triplet clusters.

Sometimes there are districts with only one neighbour; these could never belong to a cluster.
Therefore the cluster definition has to be expanded: if the single neighbour of a marked dis-
trict belongs to a cluster, this district is added also.

To use TC one needs its distribution under the null hypothesis or at least its expectation and
variance (assuming the significance limits of a corresponding normal distribution are suff i-
ciently close). These depend on the region (on its topology, not just the number of districts)
and on the probabilit y of a district being marked or, under Assumption R of Section 2.4, on
the number of marked districts n1. A theoretical derivation is intractable; therefore one has to

find the distribution by simulations.

Using different regions it turns out that expectation and variance of TC under Assumption R
are approximated surprisingly well by fourth degree polynomials in n1 with missing low-order

terms:
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E( ) ,TC a n a n            ≈ +3 1
3

4 1
4

var( ) .TC b n b n b n≈ + +2 1
2

3 1
3

4 1
4

Here we assume n1 ≤ n/2; otherwise one should look for clusters in the unmarked districts. To
find the coeff icients one needs simulations at three different values of n1; using four or five

values one gets in addition a confirmation for the fit of the polynomials.

The test statistic TC can also be used for detecting regularity, i.e. marked districts that are too
evenly spread, if n1 is so large that the lower confidence limit exceeds 0. In the examples
used, this is roughly the case for n1 > n/4.

The values for TC are relatively small i ntegers. As a result, only few distinct error probabili -
ties of f irst kind are available for a given region and number of marked districts. In addition,
the approximation by the normal probabilit y function is relatively poor. Therefore, the use of
TC is not recommended for small n (smaller than about 50), and for rather small values of n1

because then only rather strong clusterings can be detected. For regions with 50 to 100 dis-
tricts, TC is applicable if moderate precision of the error probabiliti es suff ices; this is usually
the case in data mining situations. For larger regions, these shortages of TC become less
restricting and should not exceed the imponderabiliti es inherent in this kind of tests anyway.

Using again the example of Section 1.3, Figure 1, we get two clusters with 19 districts out of
the 24 black districts. The expected number of black districts in clusters is only 1.9 with a
standard deviation of 2.2. This means that (applying a continuity correction) the actual value
is by 7.6 standard deviations off the expected value and therefore again highly significant.

3.5 Comparison o f the test statistics

All statistics mentioned above take essentially only integer values. When using an
approximation by a normal distribution one should therefore apply a continuity correction.
This is particularly important for TC because its values are markedly smaller than those for
BB or BW.

The standard way to compare several test statistics is to examine their performance under the
counter hypothesis or counter hypotheses – if these can be specified. If there is only one
counter hypothesis, the maximum likelihood test is best in the sense of minimizing the error
probabilit y of second kind for a given error probabilit y of f irst kind. Usually there are lots of
possible counter hypotheses; then littl e more can be done than selecting some of them and
examining the performance of the proposed tests with respect to these.

This procedure has been used for comparing the four tests introduced in the preceeding sec-
tions. For more details see Gebhardt (1998b, Appendix B). Several regions have been used,
mainly a honeycomb of 91 hexagons (and for some simulations honeycombs of 37 to 169
hexagons), Bonn with 62 statistical districts and demographic data, 80 election districts in
eastern Germany with election data, 94 départements in France with disease data, 171 coun-
ties in north-western Germany with demographic data and an artificial region (called 100-
web) with 100 districts with either very few (mostly four) or very many neighbours (mostly
twelve).

Three groups of counter hypotheses have been used. In the first group, model A, the marked
districts have been selected randomly with changing probabiliti es: if a neighbour of a district
has just been marked, the weight of that district is multiplied by a factor. The probabiliti es for
selecting the next district are proportional to these weights.
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The second group, model B, uses general autocorrelation models, i.e. the autocorrelation fol-
lows the same law in all parts of the region. The variable is continuous and transformed into
binary data by selecting the n1 districts with the largest values. The models (1) and (2) belong

to this type.

Such a dichotomy is also used in the third group, model C, but the continuous variables are
independent (standard Gaussian) and a fixed value, typically 1.0 to 1.5, is added to a random-
ly selected district, a smaller value to its neighbours, still a smaller value to their neighbours.
This creates a moderate hump around the first district which however is obscured by the
original random variables. For all three groups, one or two parameters determine the degree of
deviation from the null hypothesis. The simulations have mostly been performed for about
10%, 20%, 30%, 40% and 50% of the districts marked.

As was to be expected, none of the test statistics turned out to be generally the best one with
respect to power (the complement of the error of second kind for given error of f irst kind).

Comparing the power of all four tests at the upper tail , i.e. used as a test for above-average
clustering, the main conclusions are the following. The variant of BB, that is BB under
Assumption R* (Section 3.2), is called BB*  in this comparison.

• The statistic BB and its variant BB*  have about the same power; sometimes BB is
better, sometimes BB* . However, when BB is better, this is mainly due to finding con-
stellations where the marked districts have above-average neighbours. The differences
between BB and BB*  are larger for areas where the districts have quite different
numbers of neighbours (100-web, Northwest).

• The statistic BW has about the same power as BB*  for 40% and 50% of the districts
marked and becomes worse for smaller percentages.

• The triplet count statistic TC has almost always a markedly smaller power than BB and
BB* . It is comparable to BW for 20% marked, mostly better for 10% and worse for
40% and 50%.

At the lower tail , i.e. used as a test for below-average clustering, model C is not applicable.
The main conclusions are the following.

• Again sometimes BB has larger power than its variant BB* , sometimes vice versa, but
the over-all advantage of BB*  now seems clearer: BB is somewhat better at model A
with large areas, but markedly worse at model B with all areas.

• The statistic BW has about the same power as BB*  for 50% of the districts marked and
becomes worse for smaller percentages.

• The statistic TC is comparable to BW at model A and to BB at model B for 30% or
more marked; it is not applicable for small percentages (roughly, below 25%) due to
the strong skewness of its distribution.

So which test statistic to take? That depends, obviously. The theoretically best founded tests
are the standard black-black count and the black-white count; the former one is clearly better
for small percentages of marked districts. Without additional information 35 to 40% may be
the break-even. The variant BB*  may be considered if either one wants a single statistic for all
proportions of marked districts (up to 50%) or if one knows that the counter hypothesis is
model B or if one wants to compensate for concentrations of marked districts with either rath-
er few or rather many neighbours. The triplet test has no justification on grounds of the test
power but should be taken into account if the explainabilit y of deviations from randomness is
an issue: it is easier to interpret a compact cluster of marked districts detected by TC than long
filaments or a general tendency for small clusters causing significance in BB or BW.
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 It has been stated in Section 6.4.4 of Cli ff and Ord (1981) that BW is asymptotically (large re-
gions size n) better than BB using the asymptotic relative eff iciency as a measure for compari-
son. However, this is not generally true. The proof uses particular counter hypotheses (auto-
correlation models) and, what is more important, it assumes that the variable in question is
actually a continuous variable and the marked districts are those where the original variable
exceeds a threshold and one is free to choose any threshold. In this particular situation, one
should use a threshold that yields n1 ≈ n/2 marked districts and for this special constellation

BW should be at least as good as, or better than, BB under Assumption R and considerably
better under Assumption N.2 Our simulations show that for small portions of the marked
districts BB is clearly better than BW.

This general result is ill ustrated by our example: BB (both versions) and TC are higly
significant, while BW is not due to the low portion (14%) of marked districts.

4 Area statistics for real-valued variables
Real-valued variables can be treated as binary variables by using a threshold, but this ignores
part of the original information. It is not so obvious how a test statistic for real-valued
variables should look like, and several alternatives have been proposed. A choice among them
should consider their advantages and disadvantages, beside their statistical power for instance
whether they just say yes or no or indicate which part of the area is suspicious. A drawback of
some statistics is the sensitivity against deviations from the normal distribution.

As mentioned above, one has to distinguish global tests for the whole region stating just a
deviation from randomness and local tests testing a particular district (and its surrounding); in
the latter case, the use as a general test looks for clusters anywhere in the region while the use
as a focused test examines one or more predefined districts, perhaps places with a putative
environmental hazard.

Focused tests are not considered in this survey except that some general tests may also be
used as focused tests. Some pertinent references are Bithell (1995), Waller and Lawson
(1995), Tango (1995), Hill s and Alexander (1989). A recent review is Lawson and Waller
(1996), which treats, despite its title, not only point data but also area data.

4.1 Moran’s I

The standard statistic for testing real-valued area data (n districts) on independence is Moran’s
I. It is mostly written as

I
n

S z
w z z

ii j

ij i ji j
=

∑ ∑
0

2

,
,

with

z x xi i= − , S wiji j0 = ∑ ,
, wii = 0.

It has been extended to regression residuals zi and to matrices W without the restriction wii  =
0, Anselin (1988, Section 8.1.1). It is of the general form (3) with fij  = zi zj. Obviously, I takes

on large values if there is a high correlation between neighbouring values of the spatial vari-
able, i.e. if either the large values or the small ones (or both) are spatially clustered.

                                                
2  In the cited book the asymptotic relative eff iciency of BB is given as 0.307 at best. I cannot verify this figure;

from the formulae given I compute values around 0.77.
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Moran’s I indicates a departure from independent observations but does not tell where this
departure occurs nor even whether large or small values or both are affected. There may be no
clustering at all; for instance, a geographical trend also leads to significant values of I.

The expectation of I is

E( )I
n

= −
−
1

1
,

the variance, E E( ) ( )I I2 2− , depends on the assumption on the distribution (Section 2.4):
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under Assumption R

with S0, S1 and S2 according to formula (4), see Sections 1.5.1 and 2.3 of Cli ff and Ord

(1981), where also the third moment under Assumption N is given.3

The second assumption takes the values zi as fixed and therefore the variance depends on

these values while under Assumption N the variance can be computed once and for all for
each area.

The coeff icient I is sometimes called spatial autocorrelation; however, it is no correlation
coeff icient. Depending on the weights and the assignment of the z-values to the districts, the
maximal value of I is mostly less than, but occasionally larger than, 1. In order to make I more
similar to a correlation coeff icient, it is sometimes divided by the expectation of its maximal
value under Assumption R, Bailey and Gatrell (1995, Section 7.4.5), but still it s range is not
exactly [-1, 1]. The exact limits of I, if needed, can be computed from the eigenvalues of a
matrix involving W, see Tiefelsdorf and Boots (1995) and the correction Tiefelsdorf and
Boots (1996).

Moran’s I is a quotient of two quadratic forms. Its exact distribution under the null hypothesis
and normally distributed variables is known, see the cited articles by Tiefelsdorf and Boots;
the probabilit y P(I>I0) for any I0 can be written as a one-dimensional real integral of a

function of the eigenvalues of an n-dimensional matrix involving the matrix W and, in the
general case, the regression matrix X (a column of 1’s if the zi are simply the deviations from

the mean).

For moderate deviations from normality, Cli ff and Ord (1981) state that the distribution of I is
quite robust. This is confirmed by Walter (1992a) for the case of incidence rates in districts
with substantially different population sizes. However, Waldhör (1996) finds in a simulation
large deviations of the mean, standard deviation and significance levels from the nominal ones
(often by a factor > 2) if the variances in the districts are quite different (this is for instance
the case if the variable is an incidence rate and the base population differs widely). He

                                                
3  The formula for var(I) pertaining to assumption N given by Bailey and Gatrell (1995, Section 7.5.3) is wrong.
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computes the variance of I under these conditions and shows in the simulations that the use of
this variance improves the significance levels considerably.

According to simulations by the author the distribution function of I is quite robust against
deviations from normality, see Gebhardt (1998b, Appendix A). Simulations include several
regions and symmetric as well as unsymmetric distributions, among them Student’s t3 (a

heavy-tailed distribution with variance but no higher moments), uniform distribution, one-
sided normal distribution. Therefore I can be used whenever an approximate test suff ices, e.g.
in data mining.

Many authors assume that the distribution of I can be approximated by a normal distribution
already for n > 20. This has also been checked by Gebhardt (1998b, Appendix A). The
approximate significance boundaries for the standardized value of I, i.e. ( )I I I− E( ) / var /1 2 ,

derived from 10000 iterations (in part 20000 iterations) for seven different distribution
functions and seven different regions (37 to 327 districts) are given in the following table;
most of the simulation results for these distributions and regions deviate from the boundary by
no more than the accuracy given in the last line. They show almost no dependency on the
number of districts.

significance level (%)      0.5          1             2             5           95           98           99           99.5   

significance boundary  -2.37  -2.18  -1.93  -1.57    1.70    2.17    2.48    2.77

accuracy    0.21    0.19    0.13    0.07    0.08    0.12    0.15    0.18

According to these simulations the nominal error probabilit y (from the normal approximation)
may be wrong by a factor up to 2 even for n > 100. The variances of I under both assumptions
(N and R) differ littl e except for rather extreme value sets, in particular if one or very few
values are much larger or smaller than all others. In these situations, only time-consuming
randomization experiments with the given data values can approximate the significance boun-
daries.

The distribution of Moran’s I assumes equal distribution for all districts. This is often not true,
in particular if the data are incidence rates and the population at risk in the districts varies
widely. The statistics I pop  and I pop

*  take this into account, Oden (1995), Oden et al. (1996).

Conceptually each person is a ‘district’ and wij = 2  if both persons reside in the same geo-

graphical district, = 1 for neighbouring geographical districts and = 0 otherwise. This leads to
a statistic in the form of Moran’s I for the geographical districts but with main diagonal
elements ≠ 0. Therefore the approximation converges only very slowly to a normal distribu-
tion and it is not appropriate in most cases; an approximation by a χ 2 distribution (using third

moments to determine the degrees of freedom) should be used. A closely related statistic is
Tango’s ‘general’ test TG , Tango (1995); for a discussion on both, see Tango (1998).

The example of Section 1.3, using now the real-valued variable “share of aliens among the
workers” itself rather than its bisection, yields I = 15.8, which is highly significant. Looking at
Figure 1, the clusters of high values seem to be the reason, but other causes could contribute,
too: there is a general trend (not shown in Figure 1) from low values in the north to large
values in the south, and most low values are clustered between Aurich (AUR) and
Braunschweig (BS); another cluster with not quite so low values is found around Trier (TR) in
the south-west. This is of course no surprise: the low values concentrate in rural areas.
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4.2 Local version o f Moran’s I

Any statistic of the form (3) can be rewritten as

Γ Γ= ∑C i1 with Γi ij ifj
C w f= ∑2 (7)

with convenient factors C1 and C2. The local indicators of spatial association (LISA) Γi are

the local contributions to the global statistic Γ. They are also used as local test statistics to find
small regions (essentially a district and ist neighbourhood) that deviate from the general
pattern. For more details, see later in Section 4.9.

Using Moran’s I in (7), the local statistics Ii are defined in Anselin (1995) as
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Instead of the randomization hypothesis R, a conditional randomization hypothesis may be
used for the local statistics: the value xi for district i is held fixed while the other values are

permuted over all other districts. These permutations need, in a simulation study, only be
performed to assign the values for the neighbours of district i (the j with wij  ≠ 0). In this case,

the factor zi / m2 is irrelevant and one has to consider only the permutations of w zij jj∑
which happen to be equivalent to those of the corresponding Getis-Ord statistics (Section 4.4
below), i.e. the conditional permutations yield the same local statistics.

According to the example and some simulations given in Anselin (1995), the distribution of
the local statistics is far from that of a normal distribution so that an approximation by the
latter one is not possible. In addition, the distribution of the Ii becomes more and more

skewed if the global autocorrelation becomes larger. An approximation by a χ 2  distribution

with proper third moment will not help, however, since the problem does not lie in the skew-
ness but rather in the extremely large fourth moment.

The extremely bad approximation by a normal distribution is confirmed by a series of simula-
tions in Gebhardt (1998b, Appendix A) using various regions with 37 to 327 districts. The
expectation and variance (under the null hypothesis) are quite stable even under distributions
for the spatial variable that are far from normal (the variance is somewhat larger than 1 for
small regions, e.g. about 1.14 for a honeycomb with 37 hexagons and 1.08 for Bonn with 62
statistical districts). The third moment of the standardized statistic ( )I I Ii i i− E( ) var /1 2  is

somewhere near –0.5 for the small regions and between –0.2 and 0.2 for the larger ones under
normal distribution but very sensitive to the distribution (e.g. it varies for 327 German
counties between –0.4 and 0.7 for five distributions that have been investigated). The fourth
moment of the standardized Ii varies even more: between 7 and 13 for normal distributions,

smaller for uniform distribution and seemingly arbitrarily large for other distributions (for
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comparison: the fourth moment of a normal distribution is 3). The confidence limits vary
accordingly; while the 1%-boundary in the simulations was mostly between 2.9 and 3.2, the
0.1%-boundary fluctuated between 4 and 8. Since small nominal error probabiliti es must be
used due to the large number of tests (one per district), large boundary values (beyond 5)
should be chosen and even then the test is very unreliable.

Strictly speaking, these significance boundaries do not pertain to the distribution of the stan-
dardized local Ii since the distribution depends on i, at least on bi. However, simulations show

here almost no variabilit y: for a region with 327 districts, the percentage points have been
determined separately for districts with 1, 2, …, 8, 9 to 11 neighbours (in each group at least
10000 function values) and the percentage points show no trend whatsoever.

A similar statistic (using different standardization) has been studied in some simulations by
Munasinghe and Morris (1996).

The example data of Section 1.3 yield significant values for several counties near Frankfurt.
The highest value is 16.0 for Frankfurt itself. Outside this area, the highest value is 7.1 for
Solingen (SG) near Köln; due to the very long-tailed distribution of  the local statistic, this
may not yet be significant. The areas with low values of aliens yield no significant local
statistics.

4.3 Geary’s c

Geary’s c seems to be used as a competitor to Moran’s I. It is also of the general form (3) with
fij  = (xi – xj)2:

( )c
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2

2

,

, wii = 0.

Geary’s c emphasises differences between neighbours comparable to variograms, while
Moran’s I resembles a correlation.

The expectation is E(c) = 1; the variance is given in Sections 1.5.1 and 2.3 of Cli ff and Ord
(1981) and elsewhere. The black-white count (Section 3.3) is a special case: the xi have only

two distinct values.

This statistic takes on large values if the variabilit y in the neighbourhoods is large; thus
roughly large values of I correspond to small values of c and vice versa.

4.4 Getis-Ord statistics Gi and Gi*

Getis and Ord (1992) proposed two statistics for finding local concentrations, Gi and Gi
*  for i

≤ n, the number of districts. They differ in that all summations related to Gi are to be taken for

j ≠ i only. The definitions and the moments are
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The variances are computed under Assumption R of Section 2.4.4

The statistics are scale-invariant but not location-invariant. They are intended for use only for
variables possessing a natural origin. Large values occur if the neighbours of district i (ex-
cluding district i itself in the case of Gi, including it in the case of Gi

*) have large values. It

seems more natural to include district i in the statistic, i.e. to use Gi
*  rather than Gi. Getis

himself (1994) proposes only Gi
* .5

The distribution of Gi and Gi
*  may be far from normal; this is suggested in Anselin (1995)

due to their similarity to the local version of Moran’s I. The use of Gi seems a bit awkward if
some districts have no neighbours, for instance if wij  = 1 for districts within a given distance

(between their centers).

When using these statistics one should be aware that one is performing n tests (which, though,
are not independent) with obvious effects on the total error probabilit y. So it is not really
surprising that Getis and Ord (1992) find five significant counties out of 100 at the 0.05 level
in their first example (sudden infant death syndrome in North Carolina).

If a Gi
*  (or a Gi) exceeds the confidence limit , a local concentration for this variable has been

found. Note that the potential ‘clusters’ are predefined by the rows of W (and unions thereof).

A software system to analyze spatial data using Gi
*   is REGARD, Unwin (1996).

4.5 Rank s tatistics

Instead of the original variables, one can use the ranks in the general formula (3). Of course,
the ranks are not independent, even under the null hypothesis of independent original
variables. Nevertheless, mean and variance for this rank statistic can be computed at least for
some functions fij .

This has been done by Walter (1994) for fij  = |r i – r j| in our notation for symmetric and binary

weights. This statistic goes back to Kemp et al. (1985). For
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Note that small  values of D indicate a positive correlation of the ranks and thus a clustering of
the original variables. The equation for E(D) holds for any weights; Walter (1994) gives also
an approximation for var(D) for arbitrary weights wij . In addition he shows by means of three

                                                
4  The original article contains a serious error. In Table 1, the expression for Yi2

*  should read

x n Yjj i
2

1
2/ ( )*∑ − .

5  In this article, the definition of G*  contains a misprint: the summation in the numerator is to be from 1 to n.
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examples that the distribution can be approximated quite well by a normal distribution. This is
confirmed by two examples in Möhner (1991) (219 districts in east Germany, 56 districts in
Scotland) with relative errors below 8% and 10%, respectively; his formula for var(D) is in
error, however.

This rank test is a global test. A significantly low value of D may have quite different reasons
(just as large values for Moran’s I), among them a clustering of high (or low) values of the
original variable or a concentration of medium values in part of the region while the values
are randomly distributed in the rest or a global trend with otherwise random distribution so
that high values tend to occur at one end of the region, low values at the opposite. In the case
of clustering, there is no apparent indication whether small or large values are clustered and
how far the cluster extends.

The rank statistic D seems to be widely used in medical applications such as health atlases al-
though its properties are largely unknown, Walter (1992a). According to this investigation,
the actual tail probabilit y of D can differ substantially from the nominal one if the values for
the districts have widely differing variances. On the other hand, even a moderately large
number of ties, in particular zero counts, has no severe effects.

4.6 Comparison o f I, c, and D

According to Cli ff and Ord (1981, Section 6.4.3), Geary’s c is asymptotically somewhat
worse than Moran’s I in the following sense: under a specific counter hypothesis (Whittle’s
model (1)) and for large regions, the asymptotic relative eff iciency is ARE(c, I) ≤ 1 while for
the maximum likelihood statistic λ one finds ARE(I, λ) = 1, i.e. Moran’s I is asymptotically
fully eff icient. The difference between I and c may be small , and in fact it vanishes for certain
regular regions (e.g. honeycombs and chess boards). The asymptotic results also do not imply
that for finite regions or other counter hypothses I is better than c although in some examples
this seems to be the case.

Walter (1992b) finds in some simulations that the power of I is somewhat better than that of c.
In addition, c is much stronger affected by varying variances in the districts (for instance in-
cidence rates based on different population sizes) than I, Walter (1992a).

Thus if there is no strong other criterion one should prefer I to c.

A series of simulations in Walter (1992a) suggests that D has generally somewhat less power
than Moran’s I or Geary’s c, which can be attributed to the loss of information (ranks rather
than the numerical values in the districts). In addition, its power is severely lower in certain
configurations such as very small hot spots (a few neighbouring districts with high values) or
long filaments of districts with high values (in this case counties in Ontario with high values
along the Great Lakes).

4.7 Triplet clusters

Sometimes one is interested in the question whether a spatial variable deviates in a certain
region substantially from the rest of the area. If the region is given in advance, for instance for
county data a Bundesland (state) or an industrial area, this can be handled as a linear model, in
the presence of autocorrelations using the procedures mentioned at the end of Section 4.9.

Obviously this is not possible for unknown regions. There are just too many connected sub-
sets of a given area, many thousands of them, that could quali fy as a test region. To alleviate
this problem, one can combine two ideas: to reduce the number of potential test areas by
requiring some degree of compactness and to take account of the number of such test areas.
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This has been tried in Gebhardt (1998c). The procedure restricts the test areas to the sets of
overlapping triplets (as in Section 3.4) and involves a heuristic for the rough number of such
test areas in a region. Conspicuous regions are searched in a kind of beam search: starting
with triplets, one finds the most outstanding clusters of size k by adding a triplet to the most
outstanding clusters of size k – 1 and k – 2 (the new triplet has 2 or 1 district, resp., in
common with the old cluster). The error probabilit y pertaining to a cluster is estimated under
the randomization hypothesis R using an approximation to the number of permutations of the
observed values that would yield a higher average for that cluster. Simulations have been
performed with several regions of 62 to 171 districts, some of them with rather extreme
connectivity properties, and with several distribution functions for the district data, again
some of them with rather extreme properties. The actual error probabilit y of f irst kind for a
given k stays in most cases below the nominal one; the combined error probabilit y (all k
between 3 and 8 to 10) mostly exceeds the nominal one by a factor 1.5 to 3, which should be
tolerable in data mining situations.

A comparison of the power with Moran’s I, again by simulations, depends heavily on the
counter hypothesis chosen. In general autocorrelation models, I has, not surprizingly, the
higher power; in a model adding a moderate hill t o otherwise random data sometimes I and
sometimes the triplet cluster test has higher power, but of course I does not indicate the reason
for its significance (let alone show a cluster) while the triplet test identifies one or more (in
general, overlapping) clusters.

An earlier proposal, Gebhardt (1997a, 1998a), is not recommended since it is too sensitive
against deviations from the normal distribution.

The example data of Section 1.3 yield an extremely significant cluster (error probabilit y well
below 10-7) around Frankfurt: F, OF, DA*, GG, and OF*. Successively larger clusters are
also highly significant, e.g. F, OF, DA*, GG,  HG, MTK,  OF*, and RÜD still with an error
probabilit y below 10-6. Considering low values of the share of aliens, the cluster EMD, OL,
WHV, WST, AUR, CLP, EL,  FRI, LER, OL*, and WIT in the north-western corner has an
error probabilit y of 0.0002. Note that these are the error probabiliti es for the combined test
randomness vs. any triplet-based cluster while the local statistics test one district (and its
neighbourhood) at a time. Thus these clusters stand out much more clearly than with the local
version of Moran’s I.

4.8 Other cluster tests

There exist various other proposals for cluster tests. I want to mention here one by Kull forff
and Nagarwalla (1995). Under the null hypothesis, the probabilit y to be a case is the same for
all i ndividuals; under the alternative, it is increased by an unknown factor in one region out of
a family of regions (e.g. circles of arbitrary radius around any one of a number of grid points).
The test statistic is the maximum likelihood statistic. Its distribution is unknown; therefore the
error probabilit y is found by a Monte Carlo testing procedure, see Section 2.6.

A test for clusters in rare diseases is proposed by Besag and Newell (1991). Let us assume
that there is a large number n of districts with populations at risk ti and number of cases yi for

a rare event (e.g. disease) such that the number of cases in a district is Poisson distributed
under the null hypothesis of independence. The test statistic counts the number of nearest
districts to any case (including the district of that case) such that the total number of cases
exceeds a limit k. The distribution of this statistic depends on the populations at risk in these
districts, i.e. it differs from one district to the next. If f or a case the number of districts to
exceed the given limit i s too small , this case indicates the center of a cluster. The example
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presented has 16183 districts and 496 cases. Choosing different limits k may sometimes yield
substantially different results, see the example by Waller and Turnbull (1993). Obviously, the
tests for neighbouring districts are correlated. Using a moderate significance level for each
single test (say, 5%) implies a sizeable expected number of cases with positive outcome, 25 in
the example. Thus the test can only be preliminary, pointing at regions with a potential
clustering.

There exist other tests for clusters in rare diseases. A test by Stone (1988) uses essentially the
maximum incidence rate in a sequence of growing surroundings of a ‘hot spot’ , e.g. a
contamination source. A test by Waller et al. (1992) tests uniform incidence rates (null
hypothesis) against incidence rates decreasing with the distance from the hot spot; it is locally
uniformly most powerful.

Given two variables for the districts of an area, one is interested in any possible association
between them. The usual tests are not applicable. Due to spatial correlation of each variable
separately, the ordinary estimator s for the standard deviation σ is not unbiased; a seeming
association may be an artefact produced by the autocorrelations of both variables.

A test of correlation between two variables with autocorrelation therefore needs a modifica-
tion of the standard t-test; σ must be estimated differently. The somewhat clumsy formulae
are given in Cli ff and Ord (1981, Section 7.2). Similarly, the standard procedure is invalid for
spatial regression. The variances must be computed from more complicated models as in Cli ff
and Ord (1981, Section 7.3.2) and in Bailey and Gatrell (1995, Section 7.5.4).

For a test of the null hypothesis ‘no correlation between two spatial processes measured at the
same points or districts’ see Cli fford et al. (1989).

4.9 Global and local tests

There are two types of statistical tests for real-valued spatial data, global and local ones.

A global test checks the whole area at once. If it is significant, one does not know in general
where in the area the deviation from randomness occurs. In fact, there need not be a particular
region producing the significance; the reason can be a strong correlation between neighbours
throughout the area or a trend from one edge to the opposite one.

A local test checks whether a particular district and its neighbours as they are specified by the
proper row of the weight matrix W deviate from randomness; which property exactly deviates
is specified by the function fij  in (3). So one can either speak of suspicious districts or of

suspicious clusters comprising the district and its neighbours. The results are more informa-
tive than those of a global test pointing to the relevant region within the area. However, one
needs n tests, which is not only more work but, more seriously, diminishes the worth of the
tests: either one must use a tiny error probabilit y of f irst kind for each district or one gets a
huge over-all error probabilit y and therefore lots of chance results.

A way out could be to use a global test for finding out whether there is an irregularity at all
and if so to find the conspicuous region by the most outstanding local statistic. However,
Moran’s I as the most prominent global spatial statistic may be insignificant while the largest
local Moran I is strongly significant or vice versa; this can be demonstrated by using random
values for the districts (standardized gaussian) and adding either a global trend or a fixed
constant for a small or large region. While both Moran’s I and the largest local statistic are
highly correlated with that constant, there is littl e correlation between both if the constant is
held fixed (unpublished simulations by the author).
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The distinction between global and local tests does not hold for the triplet-based tests,
Sections 3.4 and 4.7. These are global tests (one test per data set), but at the same time they
indicate the suspicious region. This is an advantage in data mining where one is interested in
interpretable peculiarities of the data.

4.10 Descriptive analys is

Classification of spatial data requires that not only the data in a class should be similar but in
addition the groups should be contiguous. This problem is treated in Johnston (1976).

Spatial hierarchies given in advance are utili zed for data mining, for instance for finding
characteristic rules, in the database mining system prototype GeoMiner, see Han et al. (1997),
Koperski and Han (1995).

Descriptive spatial statistics include autocorrelograms, the correlation of a variable between
areas (or points) as a function of the distance, in particular points that can be reached in 1,
2, … steps. The correlograms are probably more useful for regular grids than for irregular
tesselations. Similarly, variograms show the variance of the difference of two values as a
function of the distance. Autocorrelograms and variograms can also be constructed to show
the dependency on distance and direction.

Another means of descriptive statistics is the Moran scatterplot, a scatter diagram of zi vs.

w zij jj∑ , see Anselin (1995). Points lying astray from the others could be measurement

errors or outliers.

5 Some remarks to point data and spatially continuous data
This chapter gives some hints to the treatment of point data and continuous data as far as the
methods are related to those for area data.

5.1 Point data

Sometimes point data (in particular samples from a continuous variable) can be treated as area
data. Districts are constructed by assigning each point of the region to its nearest sample point
(Dirichlet tesselation, also called Voronoi or Thiessen polygons).

Point data as we introduced them are in fact a collection of different data types requiring
different methods for analysis.

Locational data consist purely of the points where certain events occurred. This is also re-
ferred to as event data or a point process. If several types of events are involved, it is called a
marked point process. Methods for analysing point processes are explained in several text-
books, e.g. Diggle (1983), Upton and Fingleton (1985), Ripley (1988). The latter one assumes
good knowledge in stochastic processes and Bayesian analysis. It shows that under various
circumstances a simple adoption of time series results leads to wrong conclusions; two- or
more-dimensional processes behave quite different from one-dimensional ones, in particular
they tend to be much less robust (e.g. against misspecifications and the border effect). Simple
descriptive tools are quadrat counts, the number of points in regularly or irregularly spaced
quadrats, see Cli ff and Ord (1981, Section 4.1) and Upton and Fingleton (1985, Sections 1.1
to 1.3).

A different problem is to find clusters in a multi -dimensional set of points. This can be done
by various means of cluster analysis, Ester et al. (1998). Another approach is based on a mini-
mum density of points for forming a point cluster, see Ester et al. (1996), Sander et al. (1998).
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In the case of marked point data (two types: black and white), an often used test seems to be
that of Cuzick and Edwards (1990). For each point, the k nearest neighbours are determined;
the test counts how many black points are among these nearest neighbours of black points.
Here k is a small i nteger, possibly even 1. Obviously this test has some similarity to the black-
black cout test in Section 3.1 using points rather than districts and an unsymmetric matrix W
(if point i is among the k nearest neighbours of point j, the reciprocal need not be true).

Attribute data consist of attributes attached to points. The attributes can often be analyzed
with the methods described for area data. These methods assume neighbourhood (or distance)
relations but it is not essential whether this is in reality a contiguity between districts or a
conveniently defined neighbourhood between points. One way to define neighbourhood of
points is the Dirichlet tesselation mentioned above.

Interaction data are data associated with two (or more) points such as travel time or exchange
of goods. Chapter 9 of Bailey and Gatrell (1995) is devoted to this data type.

If the points are actually samples of a continuous function, the problem of interpolation arises,
see the next section. Interpolation methods may also be applicable to point data, for instance
to estimate the point density underlying the observed points (events) of a point process.

5.2 Continuou s data

Sometimes continuous data are known only for selected points. Then methods for point or
area data may have to be used. Another task is interpolation, that is to find estimates for the
variable at points where it is not measured. Several smoothing techniques exist such as spatial
moving averages or, for regular grids, median polish. A more sophisticated method is kernel
smoothing where the smoothed value is essentially a weighted average over the values at all
other points, the weights depending on the distance, see various sections in Bailey and Gatrell
(1995).

Kriging is a class of estimation methods named after the South African mining geologist
D. G. Krige who developed an early version of it. The idea is as follows. Consider the spatial
process y(s) = f(s; β) + u(s) with unknown parameter β and a zero-mean process u(s) with
known or estimated covariance C(s, s’)  for points s and s’ . The values y(s) are measured for

some points s1, …, sN; from these values the estimate 
�
β  is derived. Then one can do better in

estimating y(s) than using  f( ;
�
)s β : u(s) can also be estimated as a linear function of u(si)

where the coeff icients turn out to be a linear function of the correlation matrix C between the
points si and of the correlation vector c between point s and the points si. The method is

widely referred to but rarely described in the textbooks on geographical data analysis; chapter
5 of Bailey and Gatrell (1995) is an exception. See also Oliver and Webster (1990), Isaaks
and Srivastava (1989).

Uncritical use of kriging may lead to debatable results. In the French disease surveill ance
system Sentinelles, see Toubiana and Flahault (1998), available in WWW under address
http://www.b3e.jussieu.fr:80/sentiweb/en/sommaire.html, area data
(incidences of diseases per 100 000 inhabitants) are displayed alternatively by département or
as smoothed contours created by adapting kriging to area data. Sometimes both displays look
entirely different, e.g. for measles in the third quarter of 1996.
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6 Discussion and conclusions

6.1 Related work

There exist several textbooks on geographical data analysis. Some of them will be briefly
reviewed here.

The classical textbook, cited over and over, is by Cli ff and Ord (1981), based on an even older
book by the same authors, Cli ff and Ord (1973). It is out of print. The major theme is the
treatment of spatial data as a process with autocorrelation. The book is mainly on area data;
one of the nine chapters covers point data. If a spatial correlation is established, there are two
basic types of models to explain it, either interaction between neighbouring areas or depen-
dency on other spatial variables, as well as a combination of both. These models are treated in
the second half of the book. The work is mathematically oriented including proofs to all the
propositions.

The textbook Bailey and Gatrell (1995) has the main parts introduction, analysis of point pat-
terns, analysis of spatially continuous data, analysis of area data, analysis of spatial interaction
data (meaning interactions between locations; examples are traff ic or exchange of goods).
Proofs are in general omitted. Attached to the book is a disk with the program INFO-MAP
and some small data sets.

Econometric models in space or in space and time are the subject of Anselin (1988). Some of
the problems treated are estimation and hypothesis testing with maximum likelihood methods,
multiple regression with spatially dependent error terms, testing for spatial heterogeneity and
space and time models. The procedures are in general too advanced for routine use as in data
mining.

‘Spatial Analysis and GIS’ by Fotheringham and Rogerson (1994) is not a textbook but a
collection of articles. The problem areas concerning the analysis of spatial data and the use of
geographic information systems are treated rather informally.

Often cited is also Cressie (1993). The emphasis is on spatial or space-time processes, i.e. on
the joint distribution of random variables (mostly Gaussian) under various covariance struc-
tures. The book cites almost 1400 references.

The pair of books Upton and Fingleton (1985), Upton and Fingleton (1989) is comparatively
easy to read. Emphasis is on applying adequate techniques; thus there are many examples,
mostly from biology and geography or a combination of both. The rationale of the methods is
developed but the mathematical derivations are mostly omitted and many practical sugges-
tions are added such as pitfalls in applying a method thoughtlessly.

Two other books on spatial data analysis are Haining (1990) that addresses itself primarily to
social scientists and Isaaks and Srivastava (1989), which concentrates on continuous data
(measured at selected points).

However, there exist many more books on the subject.

Spatial analyses have been performed already for a long time in medicine, such as the spread
of infectuous diseases. There exist numerous publications, mostly, however, with standard
statistical methods only; regional inspection is usually done by eye. If statistics like Moran’s I
or Gearie’s c have been applied, then often uncritically. Many investigations concern cancer
as well as some rare diseases (e.g. leukaemia with emphasis on the area around nuclear
plants). The Journal Statistics in Medicine has several issues devoted to statistics and com-
puting in disease clustering: Volume 15 no. 7–9, 1996 (conference at Vancouver, July 1994);
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volume 14 no. 21-22, 1995; volume 12 no. 19–20, 1993 (workshop at Port Jefferson, New
York, July 1992).

Incidence data on various diseases are collected in health atlases, see the survey of 49 atlases
by Walter and Birnie (1991).

6.2 Some caveats

It is easy to come to wrong conclusions in data mining in general, and spatial analysis has
some additional pitfalls.

There are many dangers in applying statistical procedures to conveniently available data (as
opposed to data derived after appropriate experimental design), spatial or not, including
choice of wrong models, overlooking latent variables, using (perhaps unknowingly) truncated
data, performing inherently too many tests (so that many of them are bound to be formally
‘significant’) . I recommend to read Glymour et al. (1997) for dangers in data mining in
general.

In geography, there are in general no natural objects for statistical analysis such as patients or
crop fields or production units; the boundaries of geographical districts are more or less
arbitrary, for instance historically grown, and not created for the problem at hand. Choosing
different boundaries will yield different results. This situation has been coined the modifiable
areal unit problem and has been widely discussed in the literature, see Openshaw and Taylor
(1981), Fotheringham and Rogerson (1993). The underlying variables usually vary slowly and
when they change somewhere abruptly this just does not occur at the artificial boundaries.

Different tesselations of a region will l ead to different results. Even using the smallest pos-
sible districts may not help: larger-area effects will be hidden by the random fluctuations of
the small districts. If on the other hand a region is divided into too few districts, the interesting
phenomena disappear as inconspicuous deviations of a single data item (or even distributed on
several neighbouring items).

There is some discussion in the literature whether the search for clusters is justified at all .
Clusters occur either due to spatial autocorrelation; then the location of a cluster is random. Or
the reason is that an influential variable has been forgotten in the model that should explain
the variable under study. A critique of cluster tests, primarily for small (i.e., relatively homo-
geneous) regions with point data, with a review of this discussion is given by Elli ott et al.
(1995). Another possible cause of apparent clustering lies in different quality of the data, for
instance if the area around a putative source of pollution has been screened more intensively
for persons with a particular disease; this is called the post-hoc effect. Still another cause for
clustering (or, possibly, for not finding the cluster one is looking for) is called socioeconomic
confounding, the effect of a different socioecenomic structure of the population in part of the
region. Thus the reason for cancer around a factory could be that workers are living there
smoking more than other people and not pollution from the factory.

The search for clusters seems generally acceptable in exploratory studies where any
hypotheses found should afterwards be verified or rejected with data from a different region
or possibly the same region at a different time.

Fotheringham and Rogerson (1993) discuss problems in spatial analysis, in particular in con-
nection with the use of geographical information systems (GIS). The topics are: the
modifiable areal unit problem; boundary problems; spatial interpolation; spatial sampling
procedures; spatial autocorrelation; goodness-of-f it in spatial modelli ng; context-dependent
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results and nonstationarity; aggregate versus disaggregate models. Anyone attempting to use
statistical methods with spatial data should be aware of these problems.

A particular warning regards the estimation of the variance of a spatial variable. Usually the
values at neighbouring areas or points are positively correlated. As a result, the conventional
s2 is not an unbiased estimator for the unknown σ2; it is too small . Therefore the usual tests
(assuming independent observations) yield too many formally significant results, for instance
the test for comparing two means. Again the use of the smallest possible districts (in order to
get a large sample size) is no remedy: the correlation between neighbours usually becomes
even larger.

6.3 Conclusions

The topic of this report is finding suspicious clusters for spatial data. Briefly, the situation that
has been analyzed is as follows.

We examine a region divided into n districts with a neighbourhood structure expressed in
general as a weight matrix W = {wij}. For each district, the value of a variable of interest is

given, either a binary or a real-valued variable. The null hypothesis, i.e. the uninteresting case,
is the independence of the data for all districts (or the near-independence, since spatial data
are always at least somewhat spatially correlated). We want to check if the given variable ex-
hibits deviations from this null hypothesis; more exactly, we are looking not just for any devi-
ations but for concentrations of high (or low) values in one or more subregions: spatial
clusters.

Here we mean clusters that are not specified in advance but are derived from the data. Other-
wise the conventional procedures for nominal or hierarchical variables are applicable.

As we have seen, there exist several global and local tests; which ones should be used?
Certainly, that depends – but on what?

As long as one has no clues for using other preferences, I recommend for binary data either
the BB test, Section 3.1, or the triplet cluster test, Section 3.4. The triplet test has theoretical
disadvantages (mostly smaller power, fewer distinct significance levels), but the advantage of
yielding results that are easier to interpret. If about half of the districts are marked, the BW test
is somewhat better than the BB test.

For real-valued data, I recommend Moran’s I to check whether there is a spatial dependence;
this statistic is rather insensitive against deviations from the normal distribution of the under-
lying variables. However, a departure from independency need not mean clustering. The local
version of Moran’s I is very distribution sensitive and hardly to be recommended. Therefore I
propose to combine Moran’s I with the triplet cluster statistic of Section 4.7: it is more
reliable than the local tests and finds clusters with more versatile shapes, not just a district
with all it s neighbours.

In data mining the variables for the districts are often a specialization of a much larger data
set, for instance the proportion of persons with a special characteristic (voters of a party,
owners of an appliance, customers of a business type etc.) within an age range, occupational
group and income class. The tests are performed for many combinations of these parameters
so that the total error probabilit y becomes entirely vague. In general, many suspicious results
are essentially the same due to largely overlapping subsets (either overlapping intervals of the
variable used for selecting the subset or dependency between two such variables) so that the
question arises which one of the suspicious results is most important and which ones should
be suppressed, Gebhardt (1991). In our context, one has in addition overlapping regions (not
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just different significance measures) as results; so which one to select? This problem has not
been tackled so far.
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Figure 1. Counties with a high share of aliens among workers in 171 counties in north-west
Germany. For explanation see Section 1.3.


