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Abstract

Geographicd data usually exhibit some anourt of spatial dependency, a wrrelation ketween
the values of neighbouing dstricts. Thus one wants to have measures for the strength o this
dependency and tests for the deviation from randamly distributed values. There exist several
tests. In this survey, they are @lleded and compared. This is dore separately for binary vari-
ables assuming ony two values and for red-valued variables. Among the tests are the bladk-
black coun, the blak-white court, Moran's |, Geay’s ¢ and the Getis-Ord statistics. Some
new statistics are propcsed: a variant to the bladk-bladk court and statistics based onclusters
compased o triplets of districts. Included are dso new results on the distribution d Moran’s |
and its locd version, based on simulations using several aress with 37 to 327 dstricts.
RougHy spe&king, the distribution d | is fairly close to a normal distribution and surprisingly
independent of the underlying dstribution d the district values while the locd I's are
extremely far from normal and highly dependent onthe underlying dstribution.

1 Introduction

1.1 Goal

An important goal of data mining is to extrad hidden relationships between oleds, in
particular relationships between some variables, possbly condtiona on the values of other
variables. However, looking urspedficdly for possbly interesting poperties of a data set

" The work was mostly performed when the aithor was with GMD — German Reseach Center for Information
Tedndogy, System Design Techndogy Institute, SET (now Autonamous intelli gent Systems Ingtitute, AiS).
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involves a big danger: every meaningful data set, even random data, exhibits me
peauliarities just by chance As arough gude to judge the importance of relationships in the
data, statisticd test procedures are used, but formally significant results do nd prove the
existence of deviations from randamness they only give hints that have to be confirmed (or
disproved) in further steps. This is, however, nat the placeto discussthe role of statistics in
dataminingin general; some spedfic caveas will be mentioned later (Sedion 62).

Geographicd data show a peauliarity: in addition to the wnventional variables, the relative
geographicd position d two oljeds is an important feaure. Thus one may ask whether a
variable shows a mrrelation between the values of neighbouing oheds. Such a situation is
cdled a spatial autocorrelation. ‘ Autocorrelation’ refers to a crrelation within ore variable
between the objeds in analogy to the aitocorrelation d time series. A different, though
related, question is whether objeds with some property are more or lessevenly distributed in
the spaceor exhibit aspatial clustering. This questionis the main theme of this article.

We will give asurvey onthe existing methods of determining spatial clustering with emphasis
on those that are useful for data mining. Essential charaderistics of the exploratory analysis
are that hundeds or thousands of tests are performed on a data set; thus the overall error
probability canna reasonably be kept at a predefined level. Consequently, the exact error
probability of a single test is not important (an approximate value suffices), but it shoud be
rather small (under 1% or even 0.1%) so that the distribution d the test statistic in the tailsis
nealed where the normal approximation is often insufficient. In addition, since the multitude
of tests necessarily leads to formally significant results, emphasis is on results that can easily
be interpreted.

We will concentrate on areadata — to be defined later — and mention some related work on
point data and continuous data. The survey includes sme new results by the author. These ae
expanded to some detail in Gebhardt (1998h 2000. This report does nat foll ow the style of a
textbook — poofs are mostly omitted.

1.2 Datatypes
Geographic data can rougHy be dasdfied into threetypes.

First, there ae spatially continuows data such as the devation. This particular variable is
virtually known for all points of eath with sufficient acaracy. Another example is the ar
presare. It is known orly for seleded pdnts and must be interpolated in between, but
neverthelessit exists everywhere and thus is a spatially continuous variable. In addition, it is
time-dependent.

The secondtype ae point pattern daa or point data: data that exist for some paints only. An
example isthe epicenters of eathquekes; the locaionis the data dement. Additional variables
may be dtadhed to the locaion: magnitude of the quake, time, duration. The data may be
threedimensional, for instance the center of the eathquake including also the depth. Another
example is pdlutant concentration. This is adualy a @ntinuows variable but sometimes
measured orly at so few points that interpolation is infeasible. Therefore it may have to be
treaed as point data.

Still another example is the residence of persons having a particular disease. In analyzing such
data one has of course to take into ac@urt that people ae not evenly spread over eath. If this
fad is negleded, one might find locations with high popuiation density rather than high
diseaserisk.
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The third type @nsists of area daa. A conreded region is sibdvided into smaller parts
(states, courties, statisticd districts, fields, cdls, pixels), here cdled districts. The districts are
nonoverlapping and their union is the whale region. Often it is assumed that ead dstrict is
conneded.

To ead ddtrict, the value of one or more variables is attached. In this report we distinguish
binary and red-valued variables. Binary variables take on two values only: 1 and Q yes and
no, bladk and white, marked and ummarked. The values may be inherently binary, for instance
the dedion dstricts won bya particular party or the distribution o two fiber typesin a aoss
sedion d amuscle, analyzed by Venema (1992. The binary variable may signify one dassof
anominal variable. Often the binary data ae derived from ared-vaued variable, for instance
whether that variable exceals anatural or an arbitrarily chosen threshald.

In many cases the original variables have to be normali zed somehow to make the values com-
parable. For instance, comparing the numbers of unemployed in a ourty makes littl e sense;
the unemployment rate shoud be mnsidered. Finding the proper normalizaion can be a
problem. Thus the number of traffic acedentsin a courty depends certainly onthe popuation
(or the number of licensed cars) but also onthe road net and the propation d cars from other
courties onthe road.

Even with namalizdion, the aeas sroud be comparable to achieve proper results. If for in-
stance the number of inhabitants is the normalizing fador, the popuation d the aess soud
nat differ too much. It makes no sense to compare Vatican City with Russa.

1.3 Example

As an illustration consider Figure 1 (on page 32). It shows 171 courties in nath-west
Germany, marked by the motor vehicle ades (if a dty and the surroundng courty have the
same de, the latter one is distingushed here by an asterix). Some examples to help locae
the region: HB Bremen, H Hannower, E Esen, K Kdln (Cologre), AC Aadhen, BN Bonn, F
Frankfurt, SB Saabricken.

Basis for the variable under consideration is the number of persons working and cournted for
social seaurity (sozialversicherungspflichtig Beschéftigte, henceforth caled “workers’ for
short). Figure 1 (page 32) shows the aurties with a high share of aliens among the workers.
There seam to be two clusters, one in the industrial region ketween Essen and Bonn and the
other one aoundFrankfurt. Is thisa danceresult? The arerage of the mwunty valuesis 0.071
with a standard deviation d 0.034. The largest value, 0.183 pertains to Grol3 Gerau (GG)
nea Frankfurt, the smallest one to Dannenberg (DAN) in the north. As a binary variable, we
will arbitrarily bised the rate of aliensat 0.11, i.e., courties with arate > 0.11 are mnsidered
black or marked. Incidentally, the results for biseding at 0.10 a 0.12 are cmparable. The
data ae taken from Statistisches Bundesamt (1994 1995 and refer to 1993

1.4 Overview

The main part deds with the analysis of areadata: binary variables in chapter 3, red-valued
variables in chapter 4. Common concepts are introduced before in chapter 2.

The treament of point data and spatially continuows datais ketched in chapter 5.

The last chapter charaderizes some textbooks, pointsto ather related work and warns of some
dangers and ptfall s particularly with spatial data; finally it offers ssme general conclusions.

We negled here modelsin spaceandtime, althoughthey are dso treaed in several textbooks,
for instancein Anselin (1988, Cresge (1993.
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2 General model for area data

A goal of the analysis of spatial data is to find spatial correlations and spatial regularities or
peauliarities. Due to the two-dimensional structure there is a high chance that courties with
large (or small) values of the mnsidered variable ae neighbous; thus one has to be caitious
in interpreting seemingly conspicuous concentrations. For a statisticd test, one has to spedfy
the null hypathesis (no peadliarity is present, usually independence of all districts is assumed)
and a proper aternative or set of alternatives, the muner hypaheses. The amncepts common
to most tests of spatial areadata ae developed in this chapter.

2.1 Null hypothesis
The null hypahesis with areadata is usualy that all values are independent and dstributed
acording to aknown o unknovn common dstribution function.

Sometimes the ssumption d a wmmon dstribution is grosdy in error, for instance if the
variable is derived from samples of different sizes (diff erent popuation sizes in the districts).
Here one can sometimes assume that the distributions belong to the same dass (Poison,
normal, etc.) and that, under the null hypahesis, the pertinent parameter is known upto a
common constant. For instance, the expedation d the normally distributed variables could be
¢ (unknown) and the variance g2/d; with unknavn o and knavn d;, the popuation size of
district i, if the variables are district means.

Most statistics for testing the independence ajainst spatial dependencies use aweight matrix
(aswciation matrix) W with elements wjj; wjj is a measure for the awciation a neighbou-

hood letween dstrictsi andj. Some examples are:

. wjj = 1if districts i and j have a ®mmon boundry (or, aternatively, at least a com-
mon boundry paint), otherwise w;;=0.

. wij is the propation d the boundry of district i that is shared with dstrict j. This
weight matrix is unsymmetric.

. wjj = 1if the distance between districtsi and] is lessthan a threshold; otherwise, wj; =

0. The distance may be the distance between the capitals of the districts or between the
geographicd centers or between the interior points farthest from the boundary or be-
tween the aess (i.e., dired neighbous have distance 0).

. wjj is a deaeasing function d the distance (and wsually equal to zero if the distance
excedals athreshold).
. wjj = 1if the center of district j is one of the nearest k to the center of district i; other-

wise, wij = 0. Thisweight matrix is unsymmetric.

. w;j refleds the readability of district j from district i. Here two major cities that are
geographicaly far apart may have alarge value for wjj because they are wnreded by
train or airline. Such models are used for the spread o infedious diseases.

In the binary case based on dstances, small districts tend to have many associated districts
(districts with correspondng w;j > 0), while large districts may have few assciated dstricts

or nore & al. An example can be foundin Unwin (1996. If, however, the ommon boundry
is the aiterion, small districts tend to have few asciated dstricts (i.e. dired neighbous);
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tiny locd shifts in the geographicd boundiry can change the aljacency, for instance if four
districts come nealy together in apaint.

2.2 Counter hypotheses

The null hypahesis assumes independence of the spatial variables. In geographic data, thisis
nealy never true; neighbouing dstricts or points are dmost always correlated. This fad
hampers already the design a the evaluation d statisticd tests. The situation becomes worse
as vonas oretriesto chocse a ourter hypahesis or a set of counter hypaheses. Usually one
is nat interested in just any deviation from independence (which is not given anyway) but in
certain types of dependence, but how to speafy them?

There ae many passhiliti esto define cournter hypaheses. One general classconsists of distri-
butions that are still i ndependent but the distribution parameter(s) differ from one district to
the other. For example, the variables for the districts may be normally distributed with a
common Variance but with means dhifting from north to south (or in any ather diredion), the
so-cdled trend-surface andysis. Such situations can be tested by linea models containing
latitude and longtude a independent variables in the usua way.

Peauliar to spatial data is the assumption that the variables for nea-by pants or districts are
correlated. Similar models are known from time series; however, these have only one dimen-
sion (the time) and a causal dependence in ore diredion. With spatial data, one has two (or
even more) dimensions and causal dependencies in al diredions. This implies more com-
plicated models than with time series.

One particular often used model for spatial variables is Whittle's model (simultaneous
autoregressve model), see eg. Cliff and Ord (1981, Sedion 62.3), where the independent
variables & are hidden and orly derived and mutually dependent variables Xy, ..., Xj can be
observed:

Xi—p;wijxjﬂ:i «y
or in matrix natation
X=pWX+ ¢
where usually W is known while p and € are to be estimated; the variables & are assumed in-
dependent. The last equation can be rewritten as
X=(-pW)yle
With p = 0 ore gets the null hypahesis.
Another model isthe moving-average model, Cliff and Ord (1981, Sedion 62.5),
Xi=&+pY we,, X =(1+pW)e. 2)

J#1

Both models assume an autocorrelation that is in principle the same (it is ‘stationary’) in all
parts of the region. Any deviations in a subregion must be refleded beforehand in the choice
of the weights wij. The models do nd permit for instance different but unknown strengths of
the correlations in dfferent areas or a different mean in an areaor global trends in the mean.
Different strengths of the crrelation between neighbous may be a peadliarity of the
particular variable; it may also be an artefad, for instance if the districts are on the average
smaller in some regions than in athers.

Still other models and estimators for the parameters are treaed in Cliff and Ord (1981
Sedion 6), in particular the condtional autoregressve model (Bartlett’s model) in Sedion
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6.2.4, see &so Venema (1988 1989 1993 and Pernus (1989. Besag (1974 suggests a binary
Markov randam field model cdled autologistic model. More complicaed models consider a
time series of spatial data. These will not be discussed here; see eg. Sedions 1.6 and 17.3 of
Cliff and Ord (1981), Markov conreded comporents fields in space ad time by Mdller
(1998 and a Bayesian model in space ad time by Knorr-Held and Besag (1998.

2.3 Form of test statistics
Let us denate the random variable measured for district i by x;. Then many test statistics used
in pradice have the form

Cy w,f, ©)

with a constant C and fj; = f(X;, ). The matrix W used here need na necessarily be the same

as in the ounter hypaheses of Sedion 22 bu to use the same one (as far as it is known)
seans a goodchoice acording to some aymptotic results for such test statistics as Moran's |
and Geay’s c (seebelow), Cliff and Ord (1981, Sedion 64.3).

Example. Assume wj; is 1 for dired neighbous and O dherwise and x; is binary, fij = X - X.
Then ZWU f; courts the pairs of neighbouing marked (or black) districts (x; =1); ead

common bounary of marked dstricts is courted twice %Zwij f; iscdled the bladk-black

court statistic.

A variety of weights W and functions f have been propcsed in the literature; only some of
them — the more important ones — are investigated in this survey. Some others are sketched in
Marshall (1991). Recommendations for choosing the weight matrix W are given by Griffith
(1995. According to that article, an incorred choice inflates the standard error of the model
and gves awrongestimate for the aitocorrelation, particularly for small sample sizes. Gener-
aly asmall effedive aeaoutside which the weights are small or 0 seansto be better than ore

that istoolarge. In case of doult it is advisable to use several weight matrices and to compare
the results, for instance several threshdlds if wjj = 1 as long as the distance is below the

threshold.

Often ore or more of the following properties are esumed for the weight matrix W. Note that
nat al properties are compatible.

1. wjj isbinary, i.e. either 1 or O.

2. w;j = 0. It seams that this assumption is metimes tadtly made in the literature.
Sometimes it is made by using summations (as in formula (3) abowe) over i #j.

3. Zj w; =1 (or some other common constant).

4. wij = wjj. Note that in general Wis not assumed to be symmetric.
Usually one haswj; = 0, but thisis not required.

2.4  Assumptions on the distribution

The distribution d the test statistics under the null hypahesis is mostly computed under one
of the following assumptions:

N, normality. The values for the districts are derived from a cmmmon dstribution function,
for instance anarmal distribution function with a cmmon expedation and variance.
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Under the null hypahesis, al districts are independent. An aternative distribution is:
binomial with common grobability p for outcome 1.

R, randomization. The set of values for the n districts is given; the assgnment to the indi-
vidual districts is randam. There ae n! permutations. In the cae of binary variables
this amourtsto afixed number of marked dstricts.

Rk, rank statistics. The statistic is based on the ranks of the n values rather than on the
values themselves. This makes the statistic distribution independent.

A test under asumption R is a condtiona test: it is performed under the cndtion that the
numericd values of the outcomes for all districts are known, only the proper assgnment to
the districts is randam. Condtional tests are dways valid tests in the foll owing sense: if a, the
error probability of first kind, is the same under ead condtion (in ou case: for eat passhle
set of outcomes), then « is also the aror probability of first kind for the uncondtional test.
However, the best condtional test need na be the best uncondtiona test (for a speafied
meaning d ‘best’).

The null hypahesis assumes usually a ammmon variancefor all districts. This condtionis not
fulfill ed if the variables are qudients mj/d;j with largely differing denominators (individuals at
risk in the medicd literature); the numerator (numbers of cases in the medicd lit erature)
courts the subpopuiation with a distinct property. The diversity in the variances affeds even
the randomization assumption R, see Besag and Newell (1991 Sedion 21), as well as the
propcsed remedy to replacethe quaient mj/d; by the probability of exceeding this qudient
under the ssumption d a Poison dstribution with an expedation popational to dj (i.e.
expedation Adj with A = z m / z d, ). The reason is that districts with a large popuation

tend to be more homogeneous (under the null hypathesis) so that small as well as large quo-
tients tend to be mncentrated in areas with small denominators, e.g. rural areas, with an
increased chance of exhibiting there acluster of either small or large values. On the other
hand, small deviations from the null hypahesis are more likely to beacome gparent in dstricts
with large denominators favouring there aspatial clustering.

The dfea of different denominators d, on some tests is chedked in an example given by
Waller and Turnbul (1993; sometimes the test results differ markedly.

To reduce the influence of differing variances, the quaients mj/dj may be replacel by their
square roats or, in case of small numerators, by the Freaman-Tukey square roat transforma-
tion Jm /d, +,/(m +1)/d; ; an exampleis explored in Cresse axd Read (1989.

25 Monte Carlo tests

For designing an exad test of a hypahesis, it is necessary to know the distribution function o
the test statistic under the null hypahesis or at least its a percentile. This is the cae only in
few situations, see eg. Sedion 41, Moran's |; however, the computationis quite involved.

Often ore knows only the first two moments of the distribution. Then its percentiles are
approximated from thaose of the normal distribution with the same expedation and variance
or, if higher moments are avail able, from those of a X2- or beta distribution; for an example
based onaparticular f; in(3), seeCostanzo et a. (1983.

Ancther posshility is to find an approximation for the distribution function by Monte Carlo
simulations, for instance by computing 10000randam values. Thisis in particular feasible if
the distribution function daees not depend on further parameters (or perhaps on a singe
parameter; then the cmputation hes to be repeded for several parameter values and inter-
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poated in between). To find reliable values for the 5% boundry, 1000 repetitions may
suffice, but in data mining situations one needs the boundaries for error probabiliti es below
1% and thus more repetiti ons.

Alternatively on can apply a Monte Carlo test. From the null hypahesis, N — 1 samples are
drawn and the red data set is taken as N-th sample. The N statistics computed from the sam-
ples are ordered and for aone-sided upper test at level a, the aN largest values arergeded. In
particular, if the value computed from the red data is among them, the null hypahesis is
rejeded for the red data. Correspondngly one proceeals for one-sided tests at the lower end
and for two-sided tests. This Monte Carlo test has exadly the aror probability a (if aN is an
integer), but it is a randamized test: it invalves a randam comporent (rougHy spe&ing, in
certain cases the test outcome is determined by a dhance dgorithm); repeding it (with ather
random samples in the dance dgorithm) may lead to a different result. Thus it is not
advisable to use N = 20for a = 5% but rather a much larger sasmple size

The Monte Carlo test is widely used. Besag and Digdle (1977) ill ustrate its application in
spatial data analysis with severa examples and dscussits usefulness see aso Cliff and Ord
(1981, Sedion 27).

3 Area statistics for binary variables

Just to look at a map where the districts are mloured blad or white is not a reliable way to
find pealliatities such as clusters of bladk districts; the e/e is deceved for instance by
different district sizes. The tests colleded in this chapter deted primarily concentrations of
districts with ore @lour (or one value of a binary variable). They may also deted extreme
ladk of clustering byextremely low values of the test statistic.

Generally one hasto dstinguish globd tests for the whole region stating just a deviation from
randomness and local tests testing a particular district (and its surroundng). All tests for
binary datain this sdion are global; the tests for red-valued variablesin Sedion 4arein part
global, in part locd.

3.1 Black-black count test

Probably the best-known test for clustering in hinary data is the black-bladk court test. The
districts are ather bladk or white. The test compares esentialy the number of
neighbouhoods of two badk districts with the total number of neighbouhoodrelations. The
bladk-bladk court belongs to the join courts admitting more than two classes of districts.

Moments for the distribution d the bladk-bladk count statistic are given in Cliff and Ord

(1981, Sedion 22) and in many aher textbooks. The value for a blad district is 1, that for a
white district 0. The matrix W is binary; for instance, wj; = 1 if districtsi and j are neighbous

and wj; = 0 atherwise; wjj = 0. Then the general form of the statistic (3) is
1
BB:EZ,J‘W”XiXi :

We ned the abreviations

”fzxw SO:ZLJW”’

S=2%, W w),  s=Y 6w rw) @
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with w, = Zjvv”. and w; correspondngly, as is customary in statistics. For black-black

courts, wij = Wi and w; = w, which is the number of neighbous of that district. If the w;
take only thevalues 0 and 1and w; = w; , then ore gets S; = 2.

ji

Under Assumption N of Sedion 24 (of course with binomial distribution, parameter p) the
first two moments under the null hypahesis are:

E(BB) =2 S,p"

var(BB) :%pz(l— p)[Sl(l— p)+SZp] under Assumption N.

This test assumes that the proparttion p is known in advance (or estimated independently of
the sample to be analyzed).
Under Assumption R the total number of blad districts, ny, is given. The formulae for the

moments are more complex due to dependence between the districts.

_ 1. n(n -1
E(BB) _Esom, ®)

Ch, (n, - 1) 2 n(n -1 (n,-2) n(n -1)(n, -2)(n, -3)C

4ar(BB) = S 3 ( 1) n(n—l)n—Z) * n(n—l)(n—Z)(n—3) E
o D -9 -2)  my(n, ~2)(n, ~2)(n, -3)C
20 n-0n-2)  nn-1(n-2)n-3) -
g n(n -1)(n.-2)(n, -3
n(n-1)(n-2)(n-3)
g Mg under Assumption R. (6)
o n(n-1) g

Thistest isthe corred oneif p isunknavn andwould haveto be estimated from the sample to
be analyzed. It may also be used if p isknown, seeSedion 24.

Asauming that an approximation bythe normal distribution is good enough expedation and
variance of BB can be used in the usual way for testing whether the number of bladk-bladk
courts is too large indicating clustering a too low indicaing a trend to regularity (the bladk
districts are too evenly spread). According to simulations with several areas (37 to 171 ds
tricts) in Gebhardt (1998h Appendix A), the deviations from a normal distribution are in the
order of the expeded sample fluctuations for 1000 iterations, however, for 10000iterations,
some deviations beaome gparent: the upper tail is ill thicker, the lower one thinner than for
a standard namal variable. To be more predse, we give an example. The tail probability at z
= 2.5 varies mostly between 0.8% and 1.6% depending onthe percentage of marked dstricts
(for the standard namal distribution, the tail probability is0.62%); at z= 3.0 it varies between
0.2% and Q5% (0.14% for the normal distribution). The largest deviations occur if abou 10%
of the districts are marked. A theorem stating sufficient condtions for asymptotic normality is
stated in Cliff and Ord (1981 Sedion 24.2).

Taking as an example the courties with an alien rate > 0.11 in Figure 1, we find 24 badk
districts out of 171 There ae 876 reighbou relations, i.e. & = 876, furthermore, S, =

22896 BB = 37, E(BB) = 8.63, var(BB) = 19.98 undx Assumption N. Thus, BB is more than
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6 standard deviations off its expedation; the result is highly significant, as one would exped.
Under Asaumption R, E(BB) = 8.32 and var(BB) = 30 so that the result is even more
significant.

3.2 Variant of the black-black count test

An excessof bladk-bladk courts may be due to a dustering d the marked (bladk) districts; it
may also come from a @ncentration in dstricts with many neighbous (usualy large
districts). Similarly, a deficit of bladk-bladk courts may be caised by a @mncentration on
districts with few neighbous. small districts or districts alongthe border of the whale region.
These ae nat the deviations from randamnessthat one is interested in if one is looking for
spatial clusters. Therefore avariant of the bladk-bladk court is propaosed in Gebhardt (200Q
1998h 1997h.*

The expedation d BB in (5) is computed under the condtions that the total number of bladk
districtsis given (Asaumption R of Sedion 24) and that the total number of neighbous of the
blad districtsis given aswell. Wewill cdl this* AssumptionR*” . Let T, = Zi,jvvij X; denote

the total number of neighbous of the marked dstricts (x; =1) and T, = zj(zwijxj )2. Then

with a slight approximation ore obtains

2 —
E(BB) L To-T underAssumptiorR’”.

225 -T,/n
The variance under these two condtions is unknovn bu it shoud be smaller than that of BB
under Asaumption R in Sedion 31. This has been verified by numerous tests with diff erent
regions, see Gebhardt (1998h Appendix B). In these caes it has been foundthat equation (6)
overestimates the variance sightly (usualy by 0to 3%). So we ae on the safe side (the red
error of first kindis dightly smaller than expeded).

From our example, Figure 1, we now find E(BB) = 10.0 uncer Assumption R*. This is larger
than the @rrespondng value in Sedion 31 and refleds the fad that the bladk districts have
an abowve-average number of neighbous (5.62, the average is 5.43). The dustering is dill
highly significant.

3.3 Black-white count test

Instead of looking for an excess of bladk-bladk cournts one might seach a deficit of black-
white counts BW, i.e. neighbouhood relations between a bladk and a white district. In our
general expresson (3) we have to insert f(x;,x;) = (; —xj)2. Thus we define

1 2
BWZEZWH(Xi —xj) .
1]
Defining WWanalogotsly to BB, one has BB+ BW + WW= §,.

Under Asaumption N of Sedion 24, the first two moments are acording to Cliff and Ord
(1981, Sedion 22), usingq=1 —p,

E(BW) = S;pq, var(BVV)=Slpq+%Szpq(1—4pq)-

! Note that the statistic b in these publi caions courts eah neighbouhoodrelationtwice, i.e. b = 2BB.
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Under Assuumption R, using n, = n — ny, one has acording to Cliff and Ord (1981, Sedion
1.5)

E(BW) = S, n(”;rfl),

var (BW) = 52 ( ) (So +S - 52) (n( 1)(:])%2(;(2” ;) E(BW)?.

Similar formulaehad for more than two classes of districts, seeCliff and Ord (1981, Sedion
1.5). The complement, the number of neighbous belongng to the same dass is approximated
by a x2 distribution in Ohno et al. (1979 and applied to five dasses of cancer mortality in
1123 Japanese districts. The generdizaion d the BW court to more than two classes,
courting then the neighbouhoods invalving dfferent classes, seans to be more acarate,
while Ohnd s approximationis easier to compute.

Under Asumption N, we find for the example in Figure 1 (Sedion 13) BW = 61, E(BW) =
1057, var(BW) = 5687, i.e. BWistoo low by orly 1.9 standard deviations. This insignificant
result is dueto the low portion o marked dstricts, 14%.

3.4 Triplet-based cluster test

A completely diff erent approach to seaching concentrations of marked dstrictsis proposed in
Gebhardt (1997h 1999. Rather than courting reighbouhoodrelations between marked ds-
tricts, the size of marked subregions is examined. The first ideathat comes to mind is to
consider the size of a mnreded subregion that consists of marked dstricts only and whase
neighbous are dl unmarked; such a subregion is cdled a conredivity region. It turns o,
however, that thisis a bad choice Except if there ae very few marked districts (perhaps less
than 5 %), marked dstricts svow a considerable degree of connedednesseven under the null
hypahesis of randam distribution. A stronger requirement for clusteringis needed.

For this purpaose, marked triplets of districts are introduced. Essentially a triplet consists of
three (marked) districts with common boundries. Sometimes four or more districts med at a
point. For such situations a more involved definitionis needed.

A triplet is a set of three (marked) districts with a point in common such that one of the dis-
tricts shares with ether of the other two a boundiry ending in that common pant. A triplet-
based cluster or in short a triplet cluster is a maximal set of overlapping triplets. The test
statistic TC used is the total number of districts belongngto triplet clusters.

Sometimes there ae districts with orly one neighbou; these auld never belongto a duster.
Therefore the duster definition has to be expanded: if the single neighbou of a marked ds-
trict belongsto a duster, this district is added al so.

To use TC ore nedls its distribution uncer the null hypahesis or at least its expedation and
variance (assuming the significance limits of a @rrespondng namal distribution are suffi-
ciently close). These depend onthe region (on its topdogy, nat just the number of districts)
and onthe probability of a district being marked or, under Assumption R of Sedion 24, on
the number of marked dstricts ny. A theoretica derivationis intradable; therefore one has to
find the distribution bysimulations.

Using dfferent regions it turns out that expedation and variance of TC under Assumption R
are gproximated surprisingly well by fourth degreepolynomialsin nq with missng low-order
terms:
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E(TC) = a,n® +a,n’,

var(TC) = b,n? +b,n’ +b,n;.
Here we as3ume nq < n/2; otherwise one shoud look for clustersin the unmarked districts. To
find the wefficients one needs smulations at three different values of ny; using four or five
values one gets in addition a cnfirmation for the fit of the polynomials.

The test statistic TC can also be used for deteding regularity, i.e. marked dstricts that are too
evenly spread, if ny is o large that the lower confidence limit exceals 0. In the examples

used, thisisrougHy the cae for ny > n/4.

The values for TC are relatively small integers. As a result, only few distinct error probabili -
ties of first kind are available for a given region and number of marked districts. In addition,
the gproximation bythe normal probability functionis relatively poa. Therefore, the use of
TC isnot reacommended for small n (smaller than abou 50), and for rather small values of ng
becaise then ony rather strong clusterings can be deteded. For regions with 50to 100 ds-
tricts, TC is applicable if moderate predsion d the eror probabiliti es suffices; thisis usualy
the cae in data mining situations. For larger regions, these shortages of TC bemme less
restricting and shoud na exceel the imponcerabiliti es inherent in thiskind d tests anyway.

Using again the example of Sedion 13, Figure 1, we get two clusters with 19 dstricts out of
the 24 Had districts. The expeded number of blad districts in clusters is only 1.9 with a
standard deviation d 2.2. This means that (applying a continuity corredion) the adual value
isby 7.6 standard deviations off the expeded value and therefore again highly significant.

3.5 Comparison ofthe test statistics

All statistics mentioned abowve take esentialy only integer values. When using an
approximation by a normal distribution ore shoud therefore gply a cntinuity corredion.
This is particularly important for TC because its values are markedly smaller than those for
BB or BW.

The standard way to compare severa test statistics is to examine their performance under the
courter hypahesis or courter hypaheses — if these can be spedfied. If there is only ore
courter hypahesis, the maximum likelihoodtest is best in the sense of minimizing the eror
probability of second kind for a given error probability of first kind. Usually there ae lots of
possble murter hypaheses; then little more can be dore than seleding some of them and
examining the performance of the proposed tests with resped to these.

This procedure has been used for comparing the four tests introduced in the precee@ling sec
tions. For more details e Gebhardt (1998h Appendix B). Several regions have been used,
mainly a honeycomb of 91 hexagors (and for some simulations honeycombs of 37 to 169
hexagors), Bonn with 62 statisticd districts and demographic data, 80 eledion dstricts in
eastern Germany with eledion data, 94 dgpartements in France with dsease data, 171 coun
ties in nath-western Germany with demographic data and an artificial region (cdled 100
web) with 100 dstricts with either very few (mostly four) or very many neighbous (mostly
twelve).

Threegroups of courter hypaheses have been used. In the first group, model A, the marked
districts have been seleded randamly with changing probabiliti es: if a neighbou of a district
has just been marked, the weight of that district is multiplied by a fador. The probabiliti es for
seleding the next district are propartional to these weights.
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The seaond goup, model B, uses general autocorrelation models, i.e. the autocorrelation fol-
lows the same law in all parts of the region. The variable is continuows and transformed into
binary data by seleding the nq districts with the largest values. The models (1) and (2) belong
to thistype.

Such a dichatomy is aso used in the third group, model C, but the mntinuous variables are
independent (standard Gaussan) and afixed value, typicdly 1.0 to 15, is added to a randam-
ly seleded dstrict, a smaller value to its neighbous, still a smaller value to their neighbous.
This credes a moderate hump around the first district which however is obscured by the
original randam variables. For all threegroups, one or two parameters determine the degreeof
deviation from the null hypahesis. The simulations have mostly been performed for abou
10%, 20%, 30%, 40% and 5% of the districts marked.

As was to be expeded, nore of the test statistics turned ou to be generaly the best one with
resped to powver (the complement of the eror of second kind for given error of first kind).

Comparing the power of al four tests at the upper tall, i.e. used as a test for above-average
clustering, the main conclusions are the following. The variant of BB, that is BB under
Asamption R* (Sedion 32), iscdled BB* in this comparison.

. The statistic BB and its variant BB* have &ou the same power; sometimes BB is
better, sometimes BB*. However, when BB is better, thisis mainly due to finding con-
stell ations where the marked districts have dove-average neighbous. The differences
between BB and BB* are larger for areas where the districts have quite different
numbers of neighbous (100-web, Northwest).

. The statistic BW has abou the same power as BB* for 40% and 50% of the districts
marked and becomes worse for small er percentages.

. Thetriplet count statistic TC has aimost always a markedly smaller power than BB and
BB*. It is comparable to BW for 20% marked, mostly better for 10% and worse for
40% and 50%.

At the lower tail, i.e. used as a test for below-average dustering, model C is not applicéble.
The main conclusions are the foll owing.

. Again sometimes BB has larger power than its variant BB*, sometimes vice versa, but
the over-al advantage of BB* now seems cleaer: BB is smewhat better at model A
with large aeas, but markedly worse & model B with al aress.

. The statistic BW has abou the same power as BB* for 50% of the districts marked and
becomes worse for small er percentages.

. The statistic TC is comparable to BW at model A and to BB at model B for 30% or
more marked; it is not applicable for small percentages (rougHy, below 25%) due to
the strong skewnessof its distribution.

So which test statistic to take? That depends, obviously. The theoreticdly best founded tests
are the standard blad-bladk court and the bladk-white court; the former one is clealy better
for small percentages of marked districts. Withou additional information 35to 40% may be
the bregk-even. The variant BB* may be cnsidered if either one wants a single statistic for all
propations of marked dstricts (up to 50%) or if one knows that the courter hypahesis is
model B or if one wants to compensate for concentrations of marked districts with either rath-
er few or rather many neighbous. The triplet test has no justificaion on gounds of the test
power but shoud be taken into acourt if the explainability of deviations from randamnessis
aniswe: it iseasier to interpret a cmpad cluster of marked dstricts deteded by TC than long
filaments or a general tendency for small clusters causing significancein BB or BW.
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It has been stated in Sedion 64.4 o Cliff and Ord (1981) that BW is asymptoticdly (large re-
gions szen) better than BB using the asymptotic relative dficiency as a measure for compari-
son. However, this is not generally true. The proof uses particular counter hypaheses (auto-
correlation models) and, what is more important, it assumes that the variable in question is
adually a cntinuows variable and the marked dstricts are those where the original variable
excedls a threshold and ore is freeto choase any threshadld. In this particular situation, one
shoud use athreshadd that yields ny = n/2 marked dstricts and for this gedal constellation

BW shoud be & least as goodas, or better than, BB under Asaumption R and considerably
better under Asaumption N.2 Our simulations sow that for small portions of the marked
districts BBis clealy better than BW.

This general result is illustrated by ou example: BB (both versions) and TC are higly
significant, while BW is not due to the low portion (14%) of marked districts.

4 Area statistics for real-valued variables

Red-valued variables can be treaed as binary variables by using a threshald, but thisignares
part of the origina information. It is not so obvious how a test statistic for red-vaued
variables sioud look like, and several alternatives have been propased. A choice anongthem
shoud consider their advantages and dsadvantages, beside their statisticd power for instance
whether they just say yes or no a indicate which pert of the aeais suspicious. A drawbad of
some statistics is the sengitivity against deviations from the normal distribution.

As mentioned above, one has to distingush globd tests for the whole region stating just a
deviation from randamnessand local tests testing a particular district (and its urroundng); in
the latter case, the use & a general test looks for clusters anywhere in the region whil e the use
as a focused test examines one or more predefined dstricts, perhaps places with a putative
environmental hazad.

Focused tests are not considered in this survey except that some general tests may also be
used as focused tests. Some pertinent references are Bithell (19995, Waller and Lawson
(1995, Tango (1995, Hills and Alexander (1989. A recent review is Lawson and Waller
(1996, which treds, despiteitstitle, not only paint data but also areadata.

4.1 Moran’s |

The standard statistic for testing red-valued areadata (n districts) onindependenceis Moran’'s
[. It is mostly written as

n :
I :WZi,jV\/‘iZ‘ZJ with

z =X —X, SO:ZijWij’ Wii:o'
It has been extended to regresson residuals z and to matrices W withou the restriction w;j =
0, Anselin (1988 Sedion 81.1). It is of the general form (3) with fj; = 7 7. Obviously, | takes

on large values if there is a high correlation ketween neighbouing values of the spatial vari-
able, i.e. if ether the large values or the small ones (or bath) are spatially clustered.

2 |n the dted bookthe asymptotic relative dficiency of BB is given as 0.307 at best. | cannat verify this figure;
from the formulaegiven | compute values around Q77.
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Moran's | indicates a departure from independent observations but does nat tell where this
departure occurs nor even whether large or small values or both are dfeded. There may be no
clustering at all; for instance, a geographicd trend also leads to significant values of 1.
The expedation d | is
1
E(l)=-———,
()=--= 1

the variance, E(1%) - E(1)?, depends onthe assumption onthe distribution (Sedion 24):

E(I 2) — nZSl _nSZ +3$§

under Assumption N,

(n2 —1)85
! 0
E(1%) = (R En[(n ~an+3)§ -nS, +35]]

_ (nZLZ:;Z [(n2 - n)Sl -2nS, + GSS]E

under Assumption R
with &, $; and S, acwmrding to formula (4), see Sedions 1.5.1 and 23 o Cliff and Ord
(1981), where dso the third moment under Assumption N is given.’
The second asaumption takes the values z as fixed and therefore the variance depends on

these values while under Assumption N the variance can be computed orce and for al for
eath area

The mefficient | is metimes cdled spatial autocorrelation; however, it is no correlation
coefficient. Depending onthe weights and the assgnment of the z-values to the districts, the
maximal value of | is mostly lessthan, but occasionally larger than, 1. In order to make | more
similar to a correlation coefficient, it is smetimes divided by the expedation d its maximal
value under Asaumption R, Bailey and Gatrell (1995 Sedion 7.4.5), but till it s range is not
exadly [-1, 1]. The exact limits of I, if needed, can be computed from the @genvalues of a
matrix involving W, see Tiefelsdorf and Boots (1995 and the crredion Tiefelsdorf and
Boots (1996.

Moran’'s | isaquaient of two quadratic forms. Its exad distribution undbr the null hypahesis
and namally distributed variables is known, seethe dted articles by Tiefelsdorf and Boats;
the probability P(I1>1g) for any g can be written as a one-dimensional red integral of a

function d the egenvalues of an n-dimensional matrix involving the matrix W and, in the
general case, the regresson matrix X (a olumn of 1'sif the z are smply the deviations from

the mean).

For moderate deviations from normality, Cliff and Ord (1981 state that the distribution o | is
quite robust. This is confirmed by Walter (19923) for the cae of incidence rates in dstricts
with substantially different popuation sizes. However, Waldhdr (1996 finds in a smulation
large deviations of the mean, standard deviation and significance levels from the nominal ones
(often by a fador > 2) if the variances in the districts are quite different (this is for instance
the cae if the variable is an incidence rate and the base popuation dffers widely). He

® The formulafor var(l) pertaining to assuumption N given by Bail ey and Gatrell (1995 Sedion 75.3) iswrong
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computes the variance of | under these @mndtions and shows in the simulations that the use of
this varianceimproves the significancelevels considerably.

Acoording to simulations by the aithor the distribution function o | is quite robust against
deviations from normality, see Gebhardt (1998h Appendix A). Smulations include several
regions and symmetric & well as unsymmetric distributions, among them Student’s t3 (a
heavy-tailed dstribution with variance but no higher moments), uniform distribution, one-
sided namal distribution. Therefore | can be used whenever an approximate test suffices, e.g.
in data mining.

Many authors assume that the distribution | can be goproximated by a normal distribution
already for n > 20. This has also been chedked by Gebhardt (19980 Appendx A). The
approximate significance bounduries for the standardized value of 1, i.e. (I =E(1))/var*? 1,

derived from 10000 iterations (in part 20000 iterations) for seven dfferent distribution
functions and seven dfferent regions (37 to 327 dstricts) are given in the following table;
most of the simulation results for these distributions and regions deviate from the boundary by
no more than the acwracy given in the last line. They show almost no dgpendency on the
number of districts.

significancelevel (%) 0.5 1 2 5 95 98 99 995
significanceboundry -2.37 -218 -1.93 -157 170 217 248 277
acarracy 021 019 013 007 008 012 015 018

Acoording to these simulations the nominal error probability (from the normal approximation)
may be wrong byafador upto 2even for n > 100. The variances of | under bath assumptions
(N and R) differ little except for rather extreme vaue sets, in particular if one or very few
values are much larger or smaller than all others. In these situations, only time-consuming
randamization experiments with the given data values can approximate the significance boun
daries.

The distribution d Moran’s | assumes equal distributionfor all districts. Thisis often nd true,
in particular if the data ae incidence rates and the popuation at risk in the districts varies
widely. The statistics | ,,, and I;Op take this into acournt, Oden (1995, Oden et a. (1996.

Conceptualy ead personis a ‘district’ and w; =2 if both persons reside in the same geo-

graphicd district, = 1 for neighbouing geographicd districts and = 0 atherwise. Thisleads to
a statistic in the form of Moran’s | for the geographicd districts but with main dagorel
elements # 0. Therefore the goproximation converges only very slowly to a normal distribu-
tionand it is not appropriate in most cases; an approximation bya x? distribution (using third
moments to determine the degrees of freedom) shoud be used. A closely related statistic is
Tangd s ‘generd’ test T, Tango(1999; for adiscusson on bah, seeTango (1998.

The example of Sedion 13, using nav the red-valued variable “share of aliens among the
workers’ itself rather than its bisedion, yields | = 15.8, which is highly significant. Looking at
Figure 1, the dusters of high values san to be the reason, but other causes could contribute,
too: there is a general trend (not shown in Figure 1) from low values in the north to large
values in the south, and most low vaues are dustered between Aurich (AUR) and
Braunschweig (BS); anather cluster with na quite so low valuesisfoundaroundTrier (TR) in
the south-west. Thisis of course no surprise: the low values concentrate in rural areas.
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4.2 Local versionof Moran’s |
Any statistic of the form (3) can be rewritten as
r=Cc>r with M=C> wfy (7)

with convenient fadors C; and C,. The locd indicators of spatial association (LISA) I are

the locd contributions to the global statistic /. They are dso used aslocd test statistics to find
small regions (essentially a district and ist neighbouhood that deviate from the genera
pattern. For more detail s, seelater in Sedion 49.

UsingMoran’'s | in (7), thelocd statistics I; are defined in Anselin (1995 as

_ 7 -
l. ‘EZWHZJ with

oy _1 __ 2%
Z =% =X, m =33, E(l) =~

and a variance under hypahesis R (Sedion 24) given in Anselin (1993 for general wjj. In
owr speda case (binary symmetric weights, w;j = 0) this reduces, using b = z,-Wij and

m:nZ;“/(sz)z,to

var(1 ) =h "M — 22m-n) b O
) b'éh S e () e

Instead of the randamizaion hypdhesis R, a condtiona randamizaion hypdhesis may be
used for the locd statistics: the value x; for district i is held fixed while the other values are
permuted over al other districts. These permutations need, in a simulation study, only be
performed to assgn the values for the neighbous of district i (the j with wj # 0). In this case,

the fador z / my is irrelevant and ore has to consider only the permutations of ijij Z,

which happen to be equivalent to thase of the mrrespondng Getis-Ord statistics (Sedion 44
below), i.e. the condtional permutations yield the same locd statistics.

Acoording to the example and some simulations given in Anselin (1995, the distribution o
the locd statistics is far from that of a normal distribution so that an approximation by the
latter one is not posshle. In addtion, the distribution d the I; becomes more and more

skewed if the global autocorrelation becomes larger. An approximation bya x? distribution

with proper third moment will nat help, however, since the problem does nat lie in the skew-
nessbut rather in the extremely large fourth moment.

The extremely bad approximation byanormal distribution is confirmed by a series of simula-
tions in Gebhardt (1998h Appendix A) using various regions with 37 to 327 districts. The
expedation and variance (under the null hypahesis) are quite stable even under distributions
for the spatial variable that are far from normal (the variance is somewhat larger than 1 for
small regions, e.g. abou 1.14 for a horeycomb with 37 hexagons and 108 for Bonnwith 62
statistical districts). The third moment of the standardized statistic (I, —E(l,))var’? 1, is
somewhere nea —0.5 for the small regions and between —02 and Q2 for the larger ones under
normal distribution bu very sensitive to the distribution (e.g. it varies for 327 German

courties between —04 and Q7 for five distributions that have been investigated). The fourth
moment of the standardized |; varies even more: between 7 and 13for normal distributions,

smaller for uniform distribution and seemingly arbitrarily large for other distributions (for
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comparison: the fourth moment of a normal distribution is 3). The cnfidence limits vary
acordingly; while the 1%-boundry in the simulations was mostly between 29 and 32, the
0.1%-boundry fluctuated between 4 and 8 Since small nominal error probabiliti es must be
used dwe to the large number of tests (one per district), large boundry vaues (beyond 5
shoud be dhosen and even then the test is very urreliable.

Strictly spe&king, these significance boundiries do nd pertain to the distribution d the stan-
dardized locd |; sincethe distribution depends oni, at least on bj. However, simulations siow

here dmost no variability: for a region with 327 dstricts, the percentage points have been
determined separately for districts with 1, 2, ..., 8, 9 to 11 reighbous (in eat group at least
10000function values) and the percentage points snow no trend whatsoever.

A similar statistic (using dfferent standardization) has been studied in some simulations by
Munasinghe and Morris (1996.

The example data of Sedion 13 yield significant values for several courties nea Frankfurt.
The highest value is 16.0 for Frankfurt itself. Outside this area the highest value is 7.1 for
Solingen (SG) nea Kdln; due to the very longtailed dstribution d the locd statistic, this
may na yet be significant. The aeas with low values of diens yield no significant locd
statistics.

43 Geary'sc
Geay’s c seansto be used as a cmpetitor to Moran’s|. It isalso of the general form (3) with
fij = (% —Xj)21

w. =0.

c= X =X, s
Geay’'s c emphasses differences between neighbous comparable to variograms, while

Moran's | resembles a correlation.

The expedationis E(c) = 1; the varianceis given in Sedions 1.5.1 and 23 o Cliff and Ord
(1981 and elsewhere. The bladk-white court (Sedion 33) is a spedal case: the X; have only

two dstinct values.

This gatistic takes on large values if the variability in the neighbouhoods is large; thus
rougHy large values of | correspondto small values of ¢ and viceversa.

4.4  Getis-Ord statistics Gj and G;*

Getis and Ord (1992 proposed two statistics for finding loca concentrations, G; and G;* for i
< n, the number of districts. They differ in that al summations related to G; are to be taken for
j # i only. The definitions and the moments are

ZJW”XJ

G resp. G =
%
w; =0resp. 1, W =Wy X; >0,
(h—-1 for G,
- En for G,

W=Y w, X; =% % (independent of i for G" ),
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Eigd
' N NO’

) o _W(N-W)Y
E(G') =W /N, var(G') = —— 21

(N -1)X?
The variances are mmputed under Assumption R of Sedion 24.*

The statistics are scae-invariant but nat locaion-invariant. They are intended for use only for
variables posesdng a natural origin. Large values occur if the neighbous of district i (ex-
cluding dstrict i itself in the cae of Gj, including it in the cae of G;*) have large values. It

seans more natural to include district i in the statistic, i.e. to use G;* rather than G;. Getis
himself (1994 propases only G;*.°

The distribution o G; and G;" may be far from normal; this is suggested in Anselin (1995
due to their similarity to the locd version d Moran’'s |. The use of G; seans a bit awkward if
some districts have no reighbous, for instance if wjj = 1 for districts within a given dstance
(between their centers).

When using these statistics one shoud be avare that one is performing n tests (which, though
are not independent) with obvious effeds on the total error probability. So it is not redly
surprising that Getis and Ord (1992 find five significant courties out of 100at the 0.05 level
in their first example (sudden infant deah syndrome in North Carolina).

If aG;" (or aG;) exceals the confidence limit, alocd concentration for this variable has been
found Note that the potential ‘ clusters' are predefined by the rows of W (and unons thereof).
A software system to analyze spatial datausing G;" is REGARD, Unwin (1996).

45 Rank statistics

Instead of the original variables, one can use the ranks in the general formula (3). Of course,
the ranks are not independent, even under the null hypahesis of independent original
variables. Nevertheless mean and variance for this rank statistic can be mmputed at least for
some functions ;.

This has been dore by Walter (1994 for f;; = |rj —rj| in our notation for symmetric and binary

weights. This datistic goes badk to Kemp et al. (1985. For

1
D :§ZW”—‘I’i —I’j‘
one gets
E(D):n_+11 var(D)zM.
3 185,

Note that small values of D indicae apositive @rrelation d the ranks and thus a dustering o
the original variables. The egquation for E(D) halds for any weights; Walter (1994 gives also
an approximation for var(D) for arbitrary weights wj;. In addition he shows by means of three

*  The origind aticle ontains a serious error. In Table 1, the expresson for Yi2* shoud rea

S X In=(Y;)%

S Inthisarticle, the definition of G* contains amisprint: the summation in the numerator isto befrom 1 to n.
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examples that the distribution can be gpproximated qute well by anormal distribution. Thisis
confirmed by two examples in Mdhner (1991) (219 dstricts in east Germany, 56 dstricts in
Scotland) with relative arors below 8% and 10%, respeaively; his formula for var(D) is in
error, however.

Thisrank test is aglobal test. A significantly low value of D may have quite diff erent reasons
(Just as large values for Moran’s I), among them a dustering d high (or low) values of the
original variable or a mncentration d medium values in part of the region while the values
are randamly distributed in the rest or a global trend with atherwise randam distribution so
that high values tend to occur at one end d the region, low values at the oppasite. In the cae
of clustering, there is no apparent indication whether small or large values are dustered and
how far the duster extends.

The rank statistic D seems to be widely used in medicd applicaions sich as hedth atlases al-
thoughits properties are largely unknowvn, Walter (19923). According to this investigation,
the adual tail probability of D cen differ substantially from the nomina one if the values for
the districts have widely differing variances. On the other hand, even a moderately large
number of ties, in particular zero courts, has no severe dfeds.

4.6 Comparisonofl, c,and D

According to Cliff and Ord (1981, Sedion 64.3), Geay’s c is asymptoticdly somewhat
worse than Moran’s | in the following sense: under a spedfic courter hypahesis (Whittle's
model (1)) and for large regions, the asymptotic relative dficiency is ARE(c, I) < 1 while for
the maximum likelihood statistic A one finds ARE(l, A) = 1, i.e. Moran’s | is asymptoticdly
fully efficient. The diff erence between | and ¢ may be small, and in fad it vanishes for certain
regular regions (e.g. honeycombs and chessboards). The asymptotic results also do nd imply
that for finite regions or other counter hypahses | is better than ¢ athoughin some examples
this semsto be the cae.

Walter (19920 findsin some simulations that the power of | is smewhat better than that of c.
In addition, ¢ is much stronger affeded by varying variances in the districts (for instance in-
cidencerates based on dff erent popuation sizes) than |, Walter (1992).

Thusif there is no strong dher criterion ore shoud prefer | to c.

A series of simulations in Walter (19929) suggests that D has generally somewhat lesspower
than Moran's | or Geay’s c, which can be atributed to the lossof information (ranks rather
than the numericd values in the districts). In addition, its power is sverely lower in certain
configurations such as very small hot spats (a few neighbouing dstricts with high values) or
long filaments of districts with high values (in this case @urties in Ontario with high values
alongthe Grea Lakes).

4.7  Triplet clusters

Sometimes one is interested in the question whether a spatial variable deviates in a cetain
region substantially from the rest of the aea If the regionis given in advance, for instance for
courty data aBundesland (state) or an industrial areg this can be handed asalinea model, in
the presence of autocorrelations using the procedures mentioned at the end d Sedion 49.

Obvioudly this is not passble for unknavn regions. There ae just too many conreded sub-
sets of a given areg many thousands of them, that could qualify as a test region. To aleviate
this problem, one can combine two ideas: to reduce the number of potential test areas by
requiring some degreeof compadnessand to take acourt of the number of such test aress.
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This has been tried in Gebhardt (1998&). The procedure restricts the test areas to the sets of
overlapping triplets (as in Sedion 34) and invalves a heuristic for the rough number of such
test areas in a region. Conspicuous regions are seached in a kind d bean seach: starting
with triplets, one finds the most outstanding clusters of size k by adding a triplet to the most
outstanding clusters of size k — 1 and k — 2 (the new triplet has 2 o 1 dstrict, resp., in
common with the old cluster). The eror probability pertainingto a duster is estimated under
the randamizaion hypdhesis R using an approximation to the number of permutations of the
observed values that would yield a higher average for that cluster. Simulations have been
performed with severa regions of 62 to 171 districts, some of them with rather extreme
conredivity properties, and with several distribution functions for the district data, again
some of them with rather extreme properties. The adual error probability of first kind for a
given k stays in most cases below the nominal one; the combined error probability (al k
between 3and 8to 10 mostly exceeals the nominal one by afador 1.5 to 3, which shoud be
tolerable in data mining situations.

A comparison d the power with Moran’s |, again by simulations, depends heavily on the
courter hypahesis chosen. In general autocorrelation models, | has, not surprizingly, the
higher power; in a model adding a moderate hill to otherwise randam data sometimes | and
sometimes the triplet cluster test has higher power, but of course | does nat indicate the reason
for its sgnificance (let alone show a duster) while the triplet test identifies one or more (in
general, overlapping) clusters.

An ealier propcsal, Gebhardt (1997, 1998&), is not recommended since it is too sensitive
against deviations from the normal distribution.

The example data of Sedion 13 yield an extremely significant cluster (error probability well
below 10°7) around Frankfurt: F, OF, DA*, GG, and OF*. Successvely larger clusters are
also highly significant, e.g. F, OF, DA*, GG, HG, MTK, OF*, and RUD still with an error
probability below 106. Considering low values of the share of aiens, the duster EMD, OL,
WHV, WST, AUR, CLP, EL, FRI, LER, OL*, and WIT in the north-western corner has an
error probability of 0.0002 Note that these ae the aror probabiliti es for the combined test
randomness vs. any triplet-based cluster while the locd statistics test one district (and its
neighbouhood at atime. Thus these dusters gand ou much more dealy than with the locd
version d Moran’s|.

4.8 Other cluster tests

There eist various other propasals for cluster tests. | want to mention here one by Kullforff
and Nagarwalla (1995. Under the null hypahesis, the probability to be a cae is the same for
al individuals, under the dternative, it isincreased by an unknavn fador in ore region ou of
afamily of regions (e.g. circles of arbitrary radius aroundany ore of a number of grid pants).
The test statistic is the maximum likdihoodstatistic. Its distribution is unknown; therefore the
error probability isfound bya Monte Carlo testing procedure, seeSedion 26.

A test for clusters in rare diseases is proposed by Besag and Newell (199]). Let us assume
that there is alarge number n of districts with popdations at risk tj and number of casesy; for
arare event (e.g. disease) such that the number of cases in a district is Poison dstributed
under the null hypahesis of independence The test statistic courts the number of neaest
districts to any case (including the district of that case) such that the total number of cases
excedls a limit k. The distribution d this datistic depends on the popuations at risk in these
districts, i.e. it differs from one district to the next. If for a cae the number of districts to
exceal the given limit is too small, this case indicates the center of a duster. The example
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presented has 16183 districts and 496cases. Choasing dff erent limits k may sometimes yield
substantially different results, seethe example by Waller and Turnbul (1993. Obvioudly, the
tests for neighbouing dstricts are mrrelated. Using a moderate significance level for eah
singletest (say, 5%) implies asizedle expeded number of cases with pasitive outcome, 25in
the example. Thus the test can only be preliminary, pointing at regions with a potential
clustering.

There eist other tests for clustersin rare diseases. A test by Stone (1988 uses esentially the
maximum incidence rate in a sequence of growing surroundngs of a ‘hot spat’, eg. a
contamination source A test by Waller et a. (1992 tests uniform incidence rates (null
hypahesis) against incidencerates decreasing with the distance from the hot spat; it is locdly
uniformly most powerful.

Given two variables for the districts of an areg one is interested in any pcssble asciation
between them. The usual tests are nat applicable. Due to spatial correlation o ead variable
separately, the ordinary estimator s for the standard deviation o is not unbiased; a seeming
asociation may be an artefad produced bythe autocorrelations of both variables.

A test of correlation between two variables with autocorrelation therefore needs a modifica
tion d the standard t-test; o must be estimated dfferently. The somewhat clumsy formulae
are given in Cliff and Ord (1981, Sedion 7.2). Smilarly, the standard procedure isinvalid for
spatial regresson. The variances must be computed from more cmmplicaed models asin Cliff
and Ord (1981, Sedion 7.3.2) andin Bailey and Gatrell (1995 Sedion 7.5.4).

For atest of the null hypahesis ‘no correlation between two spatial processes measured at the
same points or districts' seeClifford et al. (1989.

4.9 Global and local tests
There aetwo types of statisticd tests for red-valued spatial data, global andloca ones.

A global test chedks the whole aea @ once If it is sgnificant, one does not know in general
where in the aeathe deviation from randamnessoccurs. In fad, there need na be aparticular
region produwcing the significance the reason can be astrong correlation between neighbous
throughou the aeaor atrend from one elge to the oppcsite one.

A locd test chedks whether a particular district and its neighbous as they are spedfied by the
proper row of the weight matrix W deviate from randamness which property exadly deviates
is gedfied by the function fj; in (3). So ore can either spesk of suspicious districts or of
suspicious clusters comprising the district and its neighbous. The results are more informa-
tive than those of a global test painting to the relevant region within the aea However, one
neels n tests, which is not only more work but, more seriously, diminishes the worth of the
tests: either one must use atiny error probability of first kind for ead dstrict or one gets a
huge over-all error probability and therefore lots of chanceresults.

A way out could be to use aglobal test for finding ou whether there is an irregularity at all
and if so to find the acnspicuous region by the most outstanding locd statistic. However,
Moran’'s | as the most prominent global spatial statistic may be insignificant whil e the largest
locd Moran | is grondy significant or vice versa; this can be demonstrated by wsing randam
values for the districts (standardized gaussan) and adding either a global trend a a fixed
constant for a small or large region. While both Moran’s | and the largest locd statistic ae
highly correlated with that constant, there is little crrelation between bah if the mnstant is
held fixed (unpubi shed simulations by the author).
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The distinction between gobal and locd tests does not hold for the triplet-based tests,
Sedions 3.4 and 47. These ae global tests (one test per data set), but at the same time they
indicae the suspicious region. This is an advantage in data mining where one is interested in
interpretable peauliarities of the data.

4.10 Descriptive analysis

Clasdfication of spatial data requires that not only the datain a dass $ioud be similar but in
addition the groups soud be @ntiguows. This problem is treaed in Johrston (1976.

Spdial hierarchies given in advance ae utilized for data mining, for instance for finding
charaderistic rules, in the database mining system prototype GeoMiner, seeHan et a. (1997,
Koperski and Han (1995.

Descriptive spatial statistics include autocorrelograms, the arrelation d a variable between
areas (or points) as a function d the distance, in particular points that can be readed in 1,
2, ... steps. The mrrelograms are probably more useful for regular grids than for irregular
teselations. Similarly, variograms show the variance of the difference of two values as a
function d the distance Autocorrelograms and variograms can also be constructed to show
the dependency on dstance and dredion.

Ancther means of descriptive statistics is the Moran scatterplot, a scater diagram of z vs.
zjwij z; , see Ansdlin (1999. Points lying astray from the others could be measurement

errorsor outliers.

5 Some remarks to point data and spatially continuous data

This chapter gives sme hints to the treament of point data and continuows data &s far as the
methods are related to those for areadata.

5.1 Point data

Sometimes point data (in particular samples from a continuows variable) can be treded as area
data. Districts are constructed by assgning ead pant of the region to its nearest sample point
(Dirichlet tesselation, also cdled Vorona or Thiessen pdygors).

Point data @& we introduced them are in fad a @lledion d different data types requiring
different methods for analysis.

Locationd data consist purely of the points where ceatain events occurred. This is also re-
ferred to as event data or a point process If several types of events are involved, it iscdled a
marked pant process Methods for analysing pant processes are explained in severa text-
books, e.g. Diggle (1983, Upton and Fingeton (1985, Ripley (1988. The latter one ssumes
good knavledge in stochastic processes and Bayesian analysis. It shows that under various
circumstances a simple aloption d time series results leads to wrong conclusions; two- or
more-dimensional processes behave quite different from one-dimensional ones, in particular
they tend to be much lessrobust (e.g. against misgpedficaions and the border effed). Simple
descriptive todls are quadrat counts, the number of points in regularly or irregularly spaced
quadrats, seeCliff and Ord (1981, Sedion 41) and Upton and Fingleton (1985 Sedions 1.1
to 1.3).

A different problem is to find clusters in a multi-dimensional set of paints. This can be dore
by various means of cluster analysis, Ester et al. (1998. Ancther approad is based ona mini-
mum density of paintsfor forming apoint cluster, seeEster et al. (1996, Sander et al. (1998.
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In the cae of marked padnt data (two types. bladk and white), an often used test seems to be
that of Cuzick and Edwards (1990. For ead pant, the k nearest neighbous are determined;
the test counts how many bladk paints are anong these neaest neighbous of bladk pants.
Here kisasmall i nteger, possbly even 1 Obviously thistest has some simil arity to the bladk-
blac cout test in Sedion 31 using pants rather than dstricts and an ursymmetric matrix W
(if paint i isamongthe k neaest neighbous of paint j, the redprocd need na be true).

Attribute data consist of attributes attached to pants. The atributes can often be analyzed
with the methods described for areadata. These methods assume neighbouhood(or distance)
relations but it is not essential whether this is in redity a ntiguity between districts or a
conveniently defined neighbouhood ketween pants. One way to define neighbouhood d
pointsisthe Dirichlet tesselation mentioned above.

Interaction dda are data asciated with two (or more) points sich as travel time or exchange
of goods. Chapter 9 of Bailey and Gatrell (1995 is devoted to this data type.

If the paints are adually samples of a mntinuous function, the problem of interpolation arises,
seethe next sedion. Interpolation methods may also be gplicable to pdnt data, for instance
to estimate the paint density uncerlying the observed pants (events) of a point process

5.2 Continuou s data

Sometimes continuows data ae known only for seleded pants. Then methods for point or
areadata may have to be used. Ancther task is interpalation, that is to find estimates for the
variable & points where it is not measured. Several smoathing tedhniques exist such as gatial
moving averages or, for regular grids, median pdish. A more sophisticaed method is kernel
smoathing where the smoacthed value is essentialy a weighted average over the values at all
other paints, the weights depending onthe distance, seevarious edionsin Bailey and Gatrell
(1995.

Kriging is a dass of estimation methods named after the South African mining geologist
D. G. Krige who ceveloped an ealy version d it. The ideais as follows. Consider the spatial
processy(s) = f(s; B) + u(s) with unknavn parameter 8 and a zeo-mean process u(s) with
known or estimated covariance C(s, S) for points sand s'. The values y(s) are measured for
some points sy, ..., Sy; from these values the estimate B is derived. Then ore can do letter in

estimating y(s) than using f(s/ﬁB): u(s) can also be estimated as a linea function d u(s)
where the mefficients turn ou to be alinea function d the correlation matrix C between the
points 5 and d the crrelation vedor ¢ between pant s and the points 5. The method is
widely referred to bu rarely described in the textbooks on geographicd data analysis; chapter

5 of Bailey and Gatrell (1995 is an exception. See &so Oliver and Webster (1990, Isa&ks
and Srivastava (1989.

Uncriticd use of kriging may lead to debatable results. In the French dsease surveill ance
system Sentinelles, see Toubiana and Flahault (1998, available in WWW under address
http://ww. b3e. jussieu.fr:80/sentiweb/en/sonmaire. htm, area daa
(incidences of diseases per 100000inhabitants) are displayed aternatively by département or
as snoothed contours creaed by adapting kriging to areadata. Sometimes both dsplays look
entirely different, e.g. for measlesin the third quarter of 1996
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6 Discussion and conclusions

6.1 Related work

There eist severa texbodks on geographicd data analysis. Some of them will be briefly
reviewed here.

The dasscad textbook cited over and ower, is by Cliff and Ord (1981), based onan even dder
book bythe same aithors, Cliff and Ord (1973. It is out of print. The magjor theme is the
treament of spatial data & a processwith autocorrelation. The bookis mainly on areadata;
one of the nine dhapters covers point data. If a spatial correlation is established, there ae two
basic types of models to explain it, either interadion between neighbouing areas or depen-
dency on aher spatial variables, as well as a mmbination d baoth. These models are treaed in
the seoond helf of the book The work is mathematicdly oriented including proofs to all the
propasitions.

The textbook Bailey and Gatrell (1995 has the main parts introduction, analysis of point pat-
terns, analysis of spatially continuows data, analysis of areadata, analysis of spatial interadion
data (meaning interadions between locaions; examples are traffic or exchange of goodk).
Proofs are in general omitted. Attadched to the book is a disk with the program INFO-MAP
and some small data sets.

Econametric models in spaceor in space adtime ae the subjed of Anselin (1988. Some of
the problems treaed are estimation and hypdhesis testing with maximum likelihoodmethods,
multiple regresson with spatially dependent error terms, testing for spatial heterogeneity and
space ad time models. The procedures are in general too advanced for routine use & in data
mining.

‘Spatial Analysis and GIS' by Fotheringham and Rogerson (1994 is not a textbook bu a
colledion d articles. The problem areas concerning the analysis of spatial data and the use of
geographic information systems are treaed rather informally.

Often cited is also Cresge (1993. The anphasis is on spatial or spacetime processs, i.e. on
the joint distribution o random variables (mostly Gaussan) under various covariance struc-
tures. The bookcites almost 1400references.

The pair of books Upton and Fingleton (1989, Upton and Fingleton (1989 is comparatively
easy to real. Emphasis is on applying adequate techniques; thus there ae many examples,
mostly from biology and geography a a combination d bath. The rationale of the methods is
developed bu the mathematicd derivations are mostly omitted and many pradicd sugges-
tions are alded such as pitfall s in applying a methodthougltlesdy.

Two ather books on spatial data analysis are Haining (1990 that addresses itself primarily to
social scientists and Isa&ks and Srivastava (1989, which concentrates on continuows data
(measured at seleded pants).

However, there exist many more books on the subjed.

Spatial analyses have been performed alrealy for alongtime in medicine, such as the spread
of infeduous diseases. There eist numerous pubicaions, mostly, however, with standard
statistica methods only; regional inspedionis usualy dore by eye. If statistics like Moran’'s |
or Geaie's c have been applied, then often urcriticadly. Many investigations concern cancer
as well as me rare diseases (e.g. leukaania with emphasis on the aea aound nulea
plants). The Journal Satistics in Medicine has sveral isaues devoted to statistics and com-
puting in dsease dustering: Volume 15 na 7-9 1996 (conference a Vancouver, July 1999;
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volume 14 na 21-22, 1995 volume 12 na 19-2Q 1993 (workshop at Port Jefferson, New
York, July 1992.

Incidence data on various diseases are @lleded in hedth atlases, seethe survey of 49 atlases
by Walter and Birnie (19917).

6.2 Some caveats

It is easy to come to wrong conclusions in data mining in general, and spatial analysis has
some alditional pitfalls.

There ae many dangers in applying statistica procedures to conveniently available data (as
opposed to data derived after appropriate experimental design), spatial or nat, including
choice of wrong models, overlooking latent variables, using (perhaps unknowingly) truncated
data, performing inherently too many tests (so that many o them are boundto be formally
‘significant’). | recommend to read Glymour et a. (1997 for dangers in data mining in
general.

In geography, there aein general no retural objeds for statisticd analysis such as patients or
crop fields or production unts; the boundries of geographicd districts are more or less
arbitrary, for instance historicaly grown, and nd creaed for the problem at hand. Choasing
different boundaries will yield dfferent results. This stuation hes been coined the modifiable
areal unit problem and has been widely discussed in the literature, see Openshaw and Taylor
(1981), Fotheringham and Rogerson (1993. The underlying variables usually vary slowly and
when they change somewhere aruptly this just does not occur at the atificial boundaries.

Different tesslations of a region will | ead to dfferent results. Even using the smallest pos-
sible districts may nat help: larger-area dfeds will be hidden by the randam fluctuations of
the small districts. If onthe other hand aregionisdivided into too few districts, the interesting
phenomena disappea as inconspicuous deviations of a single dataitem (or even distributed on
several neighbouing items).

There is me discusson in the literature whether the seach for clusters is justified at all.
Clusters occur either due to spatial autocorrelation; then the location o a duster israndam. Or
the reason is that an influential variable has been forgotten in the model that shoud explain
the variable under study. A critique of cluster tests, primarily for small (i.e., relatively hamo-
geneous) regions with pdnt data, with a review of this discusson is given by Elliott et al.
(1995. Ancther posshle caise of apparent clustering lies in dfferent quality of the data, for
instance if the aea aounda putative source of palution has been screened more intensively
for persons with a particular disease; this is cdled the post-hoc efed. Still another cause for
clustering (or, possbly, for not finding the duster one islooking for) is cdled socioeconamic
confoundng, the dfead of a different socioecenomic structure of the popuation in part of the
region. Thus the reason for cancer around a fadory could be that workers are living there
smoking more than ather people and nd pall ution from the facory.

The seach for clusters sens generally acceptable in exploratory studies where aty
hypaheses found shoud afterwards be verified o rejeded with data from a diff erent region
or posshly the same region at a different time.

Fotheringham and Rogerson (1993 discussproblems in spatial analysis, in particular in con-
nedion with the use of geographicd information systems (GIS). The topics are: the
modifiable aed unit problem; boundry problems; spatia interpolation; spatial sampling
procedures; spatial autocorrelation; goodressof-fit in spatial modelling; context-dependent



Survey oncluster tests for spatial areadata 27

results and norstationarity; aggregate versus disaggregate models. Anyore dtempting to use
statisticd methods with spatial data shoud be avare of these problems.

A particular warning regards the estimation d the variance of a spatia variable. Usually the
values at neighbouing areas or paints are positively correlated. As a result, the cnventional
s is nat an unbased estimator for the unknovn ¢2; it is too small. Therefore the usual tests
(asuming independent observations) yield too many formally significant results, for instance
the test for comparing two means. Again the use of the smallest possble districts (in order to
get a large sample size) is no remedy: the wrrelation between neighbous usually becomes
even larger.

6.3 Conclusions

The topic of thisreport isfinding suspicious clusters for spatial data. Briefly, the situation that
has been analyzed is as follows.

We examine aregion dvided into n districts with a neighbouhood structure expressd in
general as aweight matrix W = {w;;}. For ead dstrict, the value of a variable of interest is
given, either abinary or ared-valued variable. The null hypahesis, i.e. the uninteresting case,
is the independence of the data for al districts (or the nea-independence, since spatial data
are dways at least somewhat spatially correlated). We want to ched if the given variable ex-
hibits deviations from this null hypahesis; more exadly, we aelooking nd just for any devi-
ations but for concentrations of high (or low) values in ore or more subregions. spatial
clusters.

Here we mean clusters that are not spedfied in advance but are derived from the data. Other-
wise the conventional procedures for nominal or hierarchicd variables are goplicable.

As we have see, there eist several global and locd tests; which ores $oud be used?
Certainly, that depends — bu onwhat?

As long as one has no clues for using aher preferences, | recommend for binary data ether
the BB test, Sedion 31, or the triplet cluster test, Sedion 34. The triplet test has theoreticd
disadvantages (mostly smaller power, fewer distinct significance levels), but the advantage of
yielding results that are eaier to interpret. If abou half of the districts are marked, the BW test
is smewhat better than the BB test.

For red-valued data, | recommend Moran’s | to chedk whether there is a spatial dependence
this gatistic is rather insensitive against deviations from the normal distribution d the under-
lying variables. However, a departure from independency need nad mean clustering. The locd
version d Moran’s | is very distribution sensitive and hardly to be recommended. Therefore |
propase to combine Moran’s | with the triplet cluster statistic of Sedion 47: it is more
reliable than the locd tests and finds clusters with more versatile shapes, nat just a district
with al its neighbous.

In data mining the variables for the districts are often a spedalizaion d a much larger data
set, for instance the propation d persons with a speda charaderistic (voters of a party,
owners of an appliance, customers of a businesstype dc.) within an age range, occupational
group and income dass The tests are performed for many combinations of these parameters
so that the total error probability beaomes entirely vague. In general, many suspicious results
are esentialy the same due to largely overlapping subsets (either overlapping intervals of the
variable used for seleding the subset or dependency between two such variables) so that the
question arises which ore of the suspicious results is most important and which ores shoud
be suppressed, Gebhardt (1997). In ou context, one has in addition owerlapping regions (not
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just different significance measures) as results; so which ore to seled? This problem has nat
been tadkled so far.
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Figure 1. Courties with a high share of aliens amongworkersin 171courties in nath-west
Germany. For explanation seeSedion 1.3.



